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a b s t r a c t

Removing non-uniform blur caused by camera shaking is troublesome because of its high
computational cost. We analyze the efficiency bottlenecks of a non-uniform deblurring algorithm
and propose an efficient optical computation deblurring framework that implements the
time-consuming and repeatedly required modules, i.e., non-uniform convolution and perspective
warping, by light transportation. Specifically, the non-uniform convolution and perspective
warping are optically computed by a hybrid system that is composed of an off-the-shelf
projector and a camera mounted on a programmable motion platform. Benefitting from the high
speed and parallelism of optical computation, our system has the potential to accelerate existing
non-uniform motion deblurring algorithms significantly. To validate the effectiveness of the
proposed approach, we also develop a prototype system that is incorporated into an iterative
deblurring framework to effectively address the image blur of planar scenes that is caused by 3D
camera rotation around the x-, y- and z-axes. The results show that the proposed approach has a
high efficiency while obtaining a promising accuracy and has a high generalizability to more
complex camera motions.

& 2013 Published by Elsevier Ltd.

1. Introduction

A key issue in computational photography, image blur caused
by camera shake, is a commonly occurring degradation; restor-
ing latent sharp images from such blurry inputs is still a
challenging problem. In real cases, camera shake blur can
intensively vary in the spatial domain. However, because of
the high complexity and computational cost of non-uniform
blurring models, studies on camera shake removal formulate
camera shake blur with uniform convolution and propose many
uniform deblurring methods [1–9].

In recent years, several promising non-uniform blind image
deblurring algorithms have been proposed, and researchers
have refocused their attention on non-uniform blur models,
which suffer severely from having a high computational cost. In
spite of the recent progress in non-uniform deblurring, the low
computational efficiency still limits the application of existing
algorithms.

Most existing deblurring algorithms can be classified into
two types—MAPL;K and variational inference-based approaches.

The former iteratively calculate a blurry image from a current
estimation of a sharp image and camera motion and then
correct the sharp image and camera motion according to the
residual between the calculated blurry image and the captured
version. In contrast, the latter approach is much more complex
and will be detailed in Section 3.2 later. However, these two
types of approaches share some repeatedly called modules that
can be calculated exactly or approximated well by non-uniform
convolution, which is an approach that is quite time-
consuming because it must be computed in a pixel-wise
manner and performed many times during the deblurring
process. Unfortunately, there is currently no accurate accelera-
tion algorithm for this operation; thus, this dilemma motivates
us to explore acceleration approaches by resorting to assis-
tance from hardware.

Optical computing for calculations of acceleration is an area
that has been well studied in optics in recent decades. Many
commonly used mathematical operations can be accelerated by
delicately designed optical systems [10,11]. However, there is
no existing optical computing system for non-uniform con-
volution, which is the module that needs acceleration the most
in the case of non-uniform deconvolution. Intuitively, time-
consuming pixel-wise convolution, which is conducted in each
iteration of non-uniform deblurring algorithms, corresponds to
a spatially varying image blurring process. This approach
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motivates us to build a new imaging system to physically
simulate the imaging process (as shown in Fig. 1) that corre-
sponds to the convolution exactly and, thus, reduce the
computational cost. In other words, we simulate the non-
uniform convolution directly instead of computing it pixel by
pixel or approximating by patch-based methods. Specifically,
we project the sharp image onto a planar screen as a synthetic
scene and simulate the blurring process by imaging the screen,
using a shaken camera driven by a programmable motion
platform. Based on this system, we build an optical computing
framework by incorporating the above simulation into widely
used deblurring iterations for non-uniform camera shake
removal under a constant depth assumption, which is widely
used in the existing non-uniform deblurring algorithms [12–
19], except for [20,21].

This paper is an extension of Yue et al.'s [22] work, which is
the first attempt to address the efficiency issue in non-uniform
deblurring by optical computing. However, the approach in the
conference version is limited in two facets: first, the approach
here is applicable only for non-blind deblurring, while
blind deblurring is more useful in real applications; second,
Yue et al. [22] derived only the optical acceleration of a MAPL;K

framework, but did not discuss the variational-based algo-
rithm, which is another important and state-of-the-art deblur-
ring framework. This paper mainly extends the following
aspects:

(1) completing the analysis of the most time-consuming opera-
tions in variational-based methods and formulating those
operations with a non-uniform convolution;

(2) applying our optical computing framework for blind
image deblurring and validating its effectiveness
experimentally;

(3) giving a motion trajectory planning method from a discrete 3D
kernel, which bridges the optical computing system and blind
deblurring framework.

2. Related studies

Non-uniform deblurring: Recently, non-uniform blurring has
attracted the interest of many researchers, and many promis-
ing algorithms have been proposed. Most of the existing
methods can be roughly categorized as pixel-wise or patch-
wise.

(1) Pixel-wise methods: The camera shake is arbitrary, and a
6-D motion model is a reasonable assumption. Blind estimation

of a 6-D blur kernel is often computationally costly; as a result,
researchers have introduced some external assistance in the
kernel estimation. Tai et al. [15,16] extend the Richardson–Lucy
(RL) algorithm [15] for non-uniform deblurring, and they
estimate the 6-D projective motion from the user interaction.
In contrast, Joshi et al. [17] measured the 6-D motion
using inertial sensors and computed the latent sharp image
with a sparse image prior. There are also researchers who
reduce the estimation cost by assuming that there is a lower
camera motion dimension. Whyte et al. [12] simplified 6-D
camera motion to 3-D rotations and solved the problem by
extending the uniform deblurring algorithm by the approach of
Fergus et al. [2]. Gupta et al. [14] proposed the 2-D translation
and 1-D rotation blur model to approximate the camera
motion, and solve the problem with a RANSAC-based frame-
work. However, non-uniformity requires the computation of
the convolution in a pixel-wise manner and pursues the
optimum blur kernel by exhaustive searching; thus, the above
approaches all suffer from having a high computational cost,
which inspires our studies on efficient non-uniform camera
shake removal.

(2) Patch-based methods: To compute the time-consuming
non-uniform convolution quickly, an Efficient Filter Flow (EFF)
based [18] method is proposed for acceleration. Recently, a
tree-structured patch-based method [21] is proposed to solve
the depth-dependent non-uniform blur kernels hierarchically.
Although these patch-based methods can greatly reduce the
running time, this approach can lead to some artifacts in cases
that have highly varying blur because the assumption of slow
variance on the blur kernels is violated in such cases. Our
approach is largely different from and advantageous over a
patch-based approximation because the acceleration is not
obtained at the expense of accuracy.

Optical computation: Optical computation attempts to perform
computation with photon movements using lenses, modulators,
detectors and any other optical elements. Researchers have made
use of the high speed and parallelism of light transport in recent
decades and have made great progress; we refer the readers to
[10,11] for a survey of this field.

Earlier works [23–28] on optical computing basically focused
on general-purpose computing, such as matrix multiplication,
Fourier transformation, and matrix decomposition. However, with
the rapid development of digital computing, the advantages of
optical computing with respect to speed have been greatly
weakened. However, it is still promising to design specific optical
computing systems for concrete tasks that require intensive non-
general calculations without accelerating their implementations.
For example, O'Toole and Kutulakos [29] uses a projector–camera
system to perform light transport computing [30], and Yu et al.
[31] apply optical computing for pattern recognition. In addition,
some optical approaches, such as coded apertures, are applied to
recover the image and scene information [16,32–34].

Non-uniform deblurring algorithms are highly time-consuming
with some non-general operations. They bear the property of
parallelism but cannot be implemented directly with current
optical computing systems. Naturally, some elegant designs are
necessary for such task-specific computations; here, we design
and implement the system and then validate it with a series of
experiments.

3. Computationally intensive calculations in non-uniform
deblurring

Targeting the development of an optical computing system
for fast non-uniform deblurring, we first analyze here the

Sharp Image

Motion Path

Synthetic 
Blurred Image

Projector

High-Dimensional 
Motion Platform

Screen

Camera

Fig. 1. The diagram of our optical computing system for fast non-uniform
convolution. The system is composed of a projector, a high-dimensional motion
platform and a camera that is mounted on the platform.
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common time-consuming calculations in existing algorithms.
Most of the existing image deblurring algorithms estimate the
blur kernel and latent sharp image separately. In terms of
mathematical derivations, the operations in latent image recov-
ery and kernel estimation are quite similar. The only difference
is that gradient information of the latent image is involved for
estimating the kernel, while low-frequency information is
required at an image restoration stage. Therefore, this paper
focuses on discussing the kernel estimation stage, and the image
restoration algorithm can be easily derived by replacing the
image gradients in the kernel estimation stage with image
intensities.

Many non-uniform deblurring algorithms are based on a
specific motion blur model, e.g., a 3-D rotational model [12],
a 2-D translation and a 1-D rotational model [14], and a 6-D
perspective projection model [15–17], among others. Accord-
ing to the discussions in [35] reported by Levin et al., for all of
these blur models, two types of kernel estimation methods can
be applied: MAPL;K and variational based. Both of the estima-
tion methods can achieve good performance, while the com-
puting processes are totally different. For the former type of
algorithm, an additional regularizer, e.g., spatially varying
terms [36,3], optimization solvers [3,37] or a delicate predic-
tion procedure [4], are required. For the latter case, some
approximations are required, such as those in [2,12]. We will
show that, in spite of the large difference in their main steps,
both of the methods can be accelerated with our system by
replacing or approximating the intensive calculations with
blurring and warping operations.

3.1. MAPL;K type of method

Almost all of the existing MAPL;K�like deblurring algorithms
optimize the latent sharp image L and blur kernel (or motion path)
K by minimizing the following energy:

EðL;KÞ ¼ J B̂ðL;KÞ�BJ2þλ1J1ðLÞþλ2J2ðKÞ; ð1Þ

where B̂ is the blurring function for generating a blurry image
from a latent sharp image L and motion K. In our scenario, K is a
3D vector that denotes 3D rotation around the x-, y- and z-axes,
respectively, and B is the observed blurry image. To simplify the
mathematical representation, L, K and B are denoted by column
vectors in the following. J1ð�Þ and J2ð�Þ regularize the estimated
sharp image and kernels to reduce the ill-posedness, with λ1 and
λ2 being weighting coefficients.

Depending on the concrete form of J1ð�Þ and J2ð�Þ in Eq. (1),
the objective functions can be convex or non-convex. For the
former case, traditional algorithms such as gradient-based
methods can be applied, for example, steepest-descent, Con-
jugate Gradient (CG) or a closed-form solution (in the fre-
quency domain and inapplicable for non-uniform deblurring).
For a non-convex case, with terms that favor sparse high-
frequency components in recovered images or that force the
camera motion trajectory to be sparse, the optimization is
much more complicated. For non-convex optimization, the
IRLS [38] algorithm convexifies the objective into a summation
of weighted least square terms, which can be solved by CG and
is widely used for deblurring due to its effectiveness. In
summary, almost all of the existing non-uniform deblurring
algorithms, either convex or non-convex, take the gradient of
the energy E in each iteration. However, the non-uniformity
makes this operation computationally intensive and becomes

an efficiency bottleneck in most of the non-uniform deblurring
algorithms.

For non-uniform deblurring, the prior terms J1ð�Þ and J2ð�Þ in
Eq. (1) are still uniform, which means that their gradient calcula-
tions can be accelerated easily. In contrast, the data term
J B̂ðL;KÞ�BJ2 is non-uniform, and its derivative manipulations
∂E=∂L and ∂E=∂K must be calculated pixel by pixel, which is a
demanding calculation.

∂E=∂L for optimizing a latent image L: For analytical conveni-
ence, we rewrite Eq. (1) as

EðL;KÞ ¼ JHL�BJ2þλ1J1ðLÞþλ2J2ðKÞ
H¼ ∑

θAΘ
Kθ �Wθ;

∂E
∂L

¼ 2HTHL�2HTBþλ1
∂J1
∂L

ð2Þ

where H is the blurring matrix that is determined by the camera
motion and the blur model. Specifically, Θ denotes the discretized
high-dimensional motion parameter space, and each θ corre-
sponds to a camera pose (described by an N-tuple for a
N-degree-of-freedom blur model) during exposure; Kθ denotes
the weight that reflects the elapsed time that the camera spends at
pose θ, i.e., Kθ is exactly the elements in the motion vector K with
the 3D pose index θ, and Wθ is the warping matrix that maps the
reference view to the view that corresponds to the camera pose θ.

For computing ∂E=∂L, HTHL and HTB are the key manipulations.
Here, H is the sparse blurring matrix for non-uniform convolution.
HL can be calculated by an exact simulation of the blurring
process, i.e., calculating all of the views along the motion path
and integrating them with the corresponding weights. In a similar
way, HT ðHLÞ and HTB should be computed by conducting the
blurring procedure with an inverse motion path (see [15] for
details).

Notably, the convolution of residuals that contain negative
values must be computed in many deblurring methods. However,
the negative values cannot be modeled by a physical imaging
process. To address this problem, we normalize the input to make
the dynamic range from 0 to 255 and map them back after optical
computing.

∂E=∂K for optimizing the non-uniform blur kernel K: We reform
Eq. (1) with a matrix representation as

EðL;KÞ ¼ JAK�BJ2þλ1J1ðLÞþλ2J2ðKÞ
A¼ ½Wθ1L Wθ2L⋯WθnL�
∂E
∂K

¼ 2AT ðAK�BÞþλ2
∂J2
∂K

ð3Þ

here θ1⋯θn is the camera pose traversing the motion parameter
space, and Wθi

is the warping matrix that corresponds to pose
θi. To minimize Eq. (3), the matrix A must be calculated many
times. Warping images are quite slow even with GPU accelera-
tion. Therefore, to derive the non-uniform motion blur kernel, a
series of highly time-consuming image warping operations is
performed.

The above analysis tells us that non-uniform convolution and
warping image sequences are common calculations and efficiency
bottlenecks, respectively, in computing ∂E=∂L and ∂E=∂K. Fortu-
nately, by a delicately designed optical computing system, both
can be accelerated by a simple snapshot. Therefore, we replace
these two operations with optical computing for acceleration, as
blocked in Algorithm 1.

T. Yue et al. / Computers & Graphics 37 (2013) 1039–1050 1041



Algorithm 1. A simple non-uniform deblurring algorithm incor-
porating our optical computing system.

Input: Blurred image B
Output: latent sharp image L and camera motion K

Initialization: L0¼B and t¼0;
Repeat

Predict sharp image by bilateral and shock filters
Repeat following step until converge :

Project Lt ; move the camera along Kt to predict

blurred image B̂t ¼ B̂ðLt ;KÞ ¼ AtKt ;

Compute residual : et ¼ B� B̂
t
;

Project et; move camera traversing motion parameter

space; computer
∂E′
∂Kθ

¼ ðWθL
tÞTet for each θ;

Update motion kernel : Ktþ1 ¼Ktþ∂E′=∂Kt ;

Set Ktþ1
θ ¼ 0 if Ktþ1

θ o0; and normalize Ktþ1
θ ¼ Ktþ1

θ

∑θK
tþ1
θ

:

������������������������
Repeat following step until converge :

Project Lt ; move the camera along Kt to predict

blurred image B̂
t ¼ B̂ðLt ;KÞ;

Compute residual : et ¼ B� B̂
t
;

Project et ; move the camera along Kt �1
to capture

correction image
∂E′
∂L

¼ B̂ðet ;Kt �1Þ;

Update latent sharp image : Ltþ t ¼ Ltþ∂E′=∂Lt ;

�������������������
t ¼ tþ1;

������������������������������������������������������
Until J B̂

t�BJ2othr.

3.2. Variational-based methods

Imposing a sparse prior on the latent sharp image, blind
deblurring can be performed by a variational Bayesian method
[2,12]. In contrast to the MAPL;K type of methods, the variational-
based methods include many specific operations that cannot be
computed by blurring and warping operations simply. However,
detailed investigation tells us that almost all of the time-
consuming operations in variational deblurring algorithms can
be transformed into or approximated by blurring and warping
operations and consequently accelerated by our system.

In this paper, we use the typical non-uniform variational
deblurring algorithm that is proposed in [13] as a representative
example. To make this paper self-contained, we briefly introduce
the algorithm and refer the readers to [13] for the details. As a
variational Bayesian-based method, the joint distribution pðL;KÞ is
approximated by the production of a series of Gaussian distribu-
tions qðβsÞ �Nð0;1=βsÞ, qðKθÞ �Nð〈Kθ〉; vKθ Þ and qðLjÞ �Nð〈Lj〉; vLj Þ as
pðL;KÞ � qðβs; L;KÞ ¼ qðβsÞ∏

j
qðLjÞ∏

θ
qðKθÞ; ð4Þ

where qðβsÞ is the zero mean noise, which follows a Gaussian
distribution, and the deviation is 1=βs; qðKθÞ and qðLjÞ are the
factorized distributions of the blur kernel and latent image,
respectively; and θ and j are the indices of the kernel and image,
respectively. In Eq. (4), all of the unknowns, including each
element (voxels and pixels) of the blur kernel and latent image
and noise, are parameterized with a probabilistic distribution with
two parameters, i.e., the expectation and variance (denoted with
〈 � 〉 and vð�Þ, respectively). According to the variational inference
theory [39], the approximated joint distribution can be estimated

by minimizing the Kullback–Leibler divergence between the
posterior joint distribution and the approximated distribution:

CKL ¼
Z

qðβs; L;KÞ ln
qðβs; L;KÞ
pðL;KÞ � ln pðB L;KÞ

�� � dβs dL dK:
�

ð5Þ

This function can be minimized by computing the optimal forms of
pðLjÞ, pðKθÞ and pðβsÞ with calculus of variation and optimizing the
parameters of the approximated distribution iteratively. The
updated rules [13, Appendix A, Eq. 35–43] are

vKθ ¼ 〈K2
θ〉� 〈Kθ〉

2 ð6Þ

vLj ¼ 〈L2j 〉�〈Lj〉2 ð7Þ

〈aij〉¼∑
K
Wijθ〈Kθ〉 ð8Þ

〈biθ〉¼∑
j
Wijθ〈Lj〉 ð9Þ

〈B̂i〉¼∑
θ
∑
j
Wijθ〈Lj〉〈Kθ〉 ð10Þ

K ð2Þ
θ ¼ 〈βs〉∑

i;j
W2

ijθv
L
j þ 〈βs〉∑

i
〈biθ〉

2 ð11Þ

K ð1Þ
θ K ð2Þ

θ ¼ 〈βs〉∑
i
〈biθ〉ðBi� B̂iÞ� 〈βs〉∑

i;j
Wijθ〈aij〉v

L
j þ 〈Kθ〉K

ð2Þ
θ ð12Þ

Lð2Þj ¼ 〈βs〉∑
i;θ
W2

ijθv
K
θ þ 〈βs〉∑

i
〈aij〉

2 ð13Þ

Lð1Þj Lð2Þj ¼ 〈βs〉∑
i
〈aij〉ðBi� B̂iÞ� 〈βs〉∑

i;θ
Wijθ〈biθ〉v

K
θ þ 〈Lj〉L

ð2Þ
j ð14Þ

here we denote the blurry image and latent image as B and L. To
represent the predicted blurry image that is computed from a
current estimation of the blur kernel and latent image, the upper
hat B̂ is used. According to the perspective geometry and blur
model, Wijθ represents the warping coefficient from pixel j in a
latent image to pixel i under a camera pose θ. In addition, to
summarize the operations, we use ½�� to denote a variable that has
the same form. For example, ½Lj� denotes that some variables, e.g.,
vjL and ΔLj, have the same size as L and can be indexed with j.

There are three main time-consuming operations in [13], and
we derive their calculations as follows.

First operation: The first term of Eqs. (11) and (13), respectively,
i.e., ∑i;jW

2
ijθ½Lj� and ∑i;θW

2
ijθ½Kθ �. In fact, the warping coefficient

Wijθ is an impulse-like function and has only a large value in
specific combinations of i, j and θ. Considering the rule of intensity
conservation, Wijθ is the discrete version of a unit impulse
function, and its square can be approximated by itself. Then, the
two operations become ∑i;jWijθ ½Lj� and ∑i;θWijθ ½Kθ�. The former
operation can be computed by summing up the intensities of the
warped latent image under the camera pose θ, i.e., ∑Wθ ½L�, and
the latter operation can be computed by summing up the inten-
sities of the image blurred from a white image (denote as I) under
kernel ½K�, i.e., ∑B̂ðI; ½K�Þ.

Second operation: Second term of Eqs. (11) and (13), respec-
tively, i.e., ∑ið∑jWijθ ½Lj�Þ2 and ∑ið∑θWijθ½Kθ �Þ2. The former term
can be computed directly by summing up the square of the
warped image under the camera pose θ. The optical computation
of the latter term is not straightforward and requires further
analysis. In fact, the components under the square ð∑θWijθ½Kθ �Þ
are the Point Spread Function (PSF) of each pixel j, and the whole
operation is exactly the L2 norm of the PSF of each pixel
j. Considering that the PSFs vary smoothly across the image lattice,
we can optically compute the intensities at a grid and compute the
intensities of the remaining pixels by spline interpolation. In the

T. Yue et al. / Computers & Graphics 37 (2013) 1039–10501042



implementation, we project a point grid pattern (with several
1-value pixels and a 0-value for the remainder) onto the screen
and compute the PSFs of the 1-value pixels with our optical
computing system.

Third operation: The second term of Eqs. (12) and (14) respec-
tively, i.e., ∑i;jWijθ∑θWijθ½Kθ�½Lj� and ∑i;θWijθ½Kθ �∑jWijθ ½Lj�. Intui-
tively, ∑ijWijθð�Þ means taking the summation after the warping
image ∑θWijθ½Kθ �½Lj�. Considering the conservation of intensity,
the warping operation should not influence the result very much;
thus, we can remove the factorWijθ in the summation symbol, and
the former operation becomes ∑i;j∑θWijθ½Kθ�½Lj�, which is exactly
the summation of the blurred image B̂ð½L�; ½K�Þ. For the latter
operation, in a similar way, we remove the first Wijθ , and it turns
into ∑i;θ½Kθ �∑jWijθ ½Lj�, which is exactly the same as the former
operation.

Based on the above discussions, the accelerations for comput-
ing the update rules from Eqs. (6) to (14) by using our system are
given in Algorithm 2. (See [13] for additional information on the
algorithm.)

Algorithm 2. Parameter update equations for variational based
algorithm.

Initialization: q(K), qð∇LÞ and qðs�2Þ
Update:

vKθ ¼ 〈K2
θ〉� 〈Kθ〉

2;

vLj ¼ 〈L2j 〉� 〈Lj〉2;

Project vL into screen;move camera to θ; get K1
img ;

Project L into screen;move camera to θ; get K2
img ;

Kð2Þ
θ ¼ 〈βs〉∑ðK1

imgþðK2
imgÞ2Þ;

Project L into screen; drive camera move along current

kernel 〈K〉; get estimated blur image B̂;

Project 〈L〉ðB�B̂Þ into screen;move camera to θ; get K3
img ;

Project vL into screen; drive camera move along current

kernel 〈K〉; get estimated blur image B̂ðvLÞ;
Kð1Þ
θ Kð2Þ

θ ¼ 〈βs〉∑ðK3
imgþ B̂ðvLÞÞþ 〈Kθ〉K

ð2Þ
θ ;

Project I into screen; drive camera move along vK;

get estimated blur image L�1;

Project grid pattern into screen; drive camera move
along 〈K〉; get estimated blur image PSFmap; compute

norm of each impulse pixel; and interpolate L2;

Lð2Þ ¼ 〈βs〉ðL1þL2Þ;
Project B� B̂ into screen; drive camera move along
current inverse kernel 〈K〉; get L3;

Lð1ÞLð2Þ ¼ 〈βs〉L
3� 〈βs〉∑B̂ðvLÞþ 〈L〉Lð2Þ;

The above analysis tells us that the most time consuming
operations in the updating of the variational-based methods can be
approximated by our optical computing system. By delicately
designing the updating process, the update rules of [13] can be
implemented with our system, and the specific manipulations are
shown in Algorithm 2.

4. Optical computing system

We design an optical computing system for accelerating
the computationally intensive manipulations that are discussed
above: a motion platform-based projector–camera module system.

4.1. A high-dimensional motion platform-based projector–camera
system

The main difference between our projector–camera system and
the commonly used system for other applications is that the
camera of our system is mounted on a motion platform. Thus,
the camera can move along a given trajectory or be fixed at a
certain pose following a users’ requirements. The diagram of the
basic system is shown in Fig. 2.

Under the assumption of a pinhole camera model, the trans-
formations from the projector to screen and the screen to camera
are both homography. Assuming that the transformation function
from the projector to screen is T pð�Þ, an input image L is projected
onto the screen to form T pðLÞ. Similarly, assuming that the
transformation from the screen to the camera is T cð�Þ, we obtain
an output image from the camera as T cðT pðLÞÞ. As the platform
moves, the transformation from the screen to the camera T cð�Þ
changes correspondingly, and it generates the captured image
T θ

c ðT pðLÞÞ at the camera pose θ. According to the perspective
geometry, homography T pð�Þ and T θ

c ð�Þ are both linear and can be
represented by matrices. For convenience, we denote them as T p

and T θ
c , respectively.

If the motion platform moves during exposure, the resulting
captured image can be represented by

B¼
Z
tA τ

T θt
c T pL dt ð15Þ

where B is the captured blurry image, θt is the camera position at
time t and fθt : tAτg composes the whole camera motion trajec-
tory, with τ being the exposure time range.

To facilitate the analysis, we define an origin position for the
motion platform as θ0, and then, the view T θt

c T pL that is captured
at position θt can be decomposed as T Δθt

c ðT θ0
c T pLÞ with

Δθt ¼ θt�θ0, and T Δθ
c is the warping matrix Wθ in Eq. (2). In

other words, the latent sharp version of the captured blurry image
is the view that is captured at the origin position, and the blurry
image is the integration of a sequence of views that is captured
along a relative motion trajectory fΔθtg. Mathematically, if the
whole transport matrix of our optical system at the origin position
T θ0

c T p is an identity matrix, i.e., the image captured at the origin
position θ0 is exactly the same as the input image of the projector,
then our high-dimensional motion platform projector–camera
system can simulate the physical blurring process by directly
moving the camera along the relative motion path fΔθtg.

High-Dimensional 
Motion Platform

Camera

Projector

Screen

Ty

Tx

TzRz

Rx

Ry

Fig. 2. Diagram of our system. The camera is mounted on the high-dimensional
motion platform, and by fixing the camera to a certain pose or moving it during
exposure with a motion path, the blurring and warping process can be computed
quickly.
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Theoretically, T θ0
c T p ¼ I indicates that the projector and the

camera should be exactly the inversion of each other in optics, and
optical computing systems must have precise calibration to ensure
their accuracy. However, it is often difficult to find the mutually
inverse projector/camera pair in practice for several reasons:
(i) most commonly, the used projectors and cameras have totally
different optical parameters; (ii) the precise alignment between
the optical centers of the camera and the projector lenses is
difficult; (iii) considering the nonlinear transformations (e.g., the
gamma correction), the transport matrix-based linear model
might not be sufficiently accurate in real cases. Therefore, in an
implementation, we add a calibration process—both geometric
and photometric—to address errors that are beyond the adopted
linear model. Leaving the calibration process details to the latter
experiment section, we first give the optical computation process
of a time-consuming module by using our calibrated system.

Calculating a warping image sequence: The optical computation
of image warping is quite simple and straightforward for our
optical computing system. In practice, for a specific view pose θi,
the snapshot by projecting L onto the screen and capturing it with
a camera pose θi will obtain exactly the desired warped image
WθiL.

Calculating a spatially varying convolution: For our optical
computing system, the blurring manipulation that is caused by
camera shake can also be computed simply by reproducing the
physical procedure of generating a blurry image. For a given high-
dimensional camera trajectory, we can capture the desired blurry
image exactly by driving the motion platform along the given
trajectory at a properly set exposure time with a velocity that
corresponds to the elapsed times at poses along the path.

Calculating operations for the variational-based algorithm: As
discussed in Section 3, after a series of approximations, the
computationally intensive operations for the variational algorithm
can be computed by our system, also. As shown in Algorithm 2, the
update rules of each iteration can be computed by several
projecting–capturing operations as well as some pixel-wise or
voxel-wise manipulations.

Motion path planning: In most of the existing deblurring
algorithms, camera motion parameters are represented by a set
of discrete camera positions, and the corresponding intensities
represent elapsed time. In other words, the camera trajectory that
drives our motion platform is not directly available, and motion
path planning is necessary to incorporate our optical computing
system into the deblurring framework.

In this paper, a 3D rotational blur model is used, and we first
construct the fully connected graph structure of the 3D kernel.
Then, the motion trajectory is computed by searching for the
Hamiltonian path, and the time elapse in each position is deter-
mined by the kernel intensities.

In theory, any traversal path of this connected-graph can be
used as the camera trajectory here. However, to protect the

platform and to reduce mechanical inaccuracy, we must reduce
the abrupt direction changes along the trajectory. We define a
weight on each edge that connects two vertices (camera poses) for
path planning, and the weight is obviously path dependent. Path
planning is performed step-wise via a Hamiltonian path search: at
each time instant, the algorithm selects one vertex that has a
minimum edge weight from all of the un-visited vertices and
disconnects the selected vertex from the other vertices; the final
path is generated by connecting the selected vertices sequentially.
Specifically, we consider only the smoothness between two
adjacent steps, and the edge weight at time t is defined as follows:

DðVa;VtÞ ¼ cos ð∠ðEðVt ;Vt�1Þ; EðVt ;VaÞÞÞ; ð16Þ
where Vt ;Vt�1 and Va are the current vertex, the previous vertex
and an un-visited vertex, respectively. Eð�; �Þ is the edge between
two vertices. Fig. 3 shows the motion path (b) that is estimated
from the discrete 3D kernel (a). One can see that there are only
3 brute angles and that most of the sub-trajectories is smooth.

5. Implementation and experiment results

This section demonstrates our prototype optical computing
system and, then, shows its performance in performing predefined
non-uniform blurring and restoring blurry images after being
incorporated into a deconvolution framework.

The whole system is shown in Fig. 4. For simplicity, we use a
3-axis rotating platform and adopt a 3-D rotational blur model.
This rotating platform can burden an approximately 40 kg load
(camera in our scenario) and moves to an orientation with any
pitch, yaw and roll angle. The maximum moving velocity is 2001/s,
and the rotating acceleration is 2001/s2, which are sufficient for

Fig. 3. 3D rotation kernel to motion path. (a) Intermediate 3D rotation kernel estimated in variational algorithm [12]. (b) Motion path estimated from the discrete 3D kernel.

Fig. 4. The prototype of a proposed high-dimensional motion platform-based
projector–camera system.
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our prototype system to validate the proposed approach.
The camera mounted on the platform is a Point Grey FL2-08S2C.
The platform and the camera are driven by control software
through an RS-232 COM and IEEE 1394, respectively. We adopt
software synchronization to ensure exact matching between the
camera's exposure time and the given platform's motion trajectory.

5.1. Projector–camera system calibration

The hybrid system should be calibrated in terms of the
geometric distortion, the intensity response curve and other
distortions. Ideally, we should calibrate the projector and the
camera independently. For simplicity and efficiency, we treat the
projector–camera system as a black box, and the experiments
show that our simple calibration method is sufficiently accurate to
prevent the computing process from suffering from distortions.

Geometric calibration: Because the projector and the camera
cannot be exactly complementary (with the same optical path), we
need a careful calibration to ensure that there is an exact
correspondence between the input image and the captured image.
One straightforward method is to calibrate all of the parameters of
the projector–camera system with a series of calibration patterns.
However, this method is complex and could suffer from unmo-
deled distortions. Fortunately, we only need the geometric corre-
spondence between the input and output image, and we can use a
coordinate map to represent the correspondence instead of an
explicit geometric model. In the implementation, we provide a
chessboard pattern to the projector and capture the projected
result with the camera. By corner matching, the correspondence
between the input and output images is determined. Because the
coordinate correspondence varies smoothly, we can largely reduce
the computation time by interpolating the corresponding map
from several corner points. Fig. 5 gives an example of our
geometric calibration, with Fig. 5(a) being the original calibration

pattern, Fig. 5(b) being the captured version by our projector–
camera system with the motion platform fixed at the origin
position, and Fig. 5(c) and (d) presenting the mapping vectors at
several landmarks for the interpolation and the calibrated pattern,
respectively.

Dark corner correction: Both the projector and camera suffer
from dark corner effects, and the effect is more significant in such
hybrid systems. To offset the dark corner, we project a constant-
intensity grey image (the intensity is set to 128 to prevent under/
over exposure) to the screen, and we compute the ratio image
between the geometrically calibrated output image and the
original input image. Fig. 6(a) and (b) shows the captured grey
image and the geometrically calibrated ratio image, respectively,
which can be used to remove the dark corner effect.

Intensity response calibration: Because the response curve of
neither the projector nor the camera is ideally linear due to some
internal transformations such as gamma correction, the intensity
response of the whole system varies nonlinearly with the intensity
and must be calibrated.

There are several contributing factors (e.g., the response curve
of the projector, the reflection properties of the screen, and the
response curve of camera) for the nonlinearity; we prefer a black-
box model here. We first project an intensity gradation map onto
the screen; then, we correct the geometric distortion and dark
corner effect of the output image, and next, we compute the
response of each intensity level by averaging all of the pixels at
this level (we remove the marginal pixels). Fig. 7 gives an example
of an intensity response calibration, (a) gives the original intensity
step pattern, (b) shows the captured image, (c) is the calibrated
version of (b) with a geometric and dark corner correction, and
(d) demonstrates the calibrated intensity response curve that is
derived by our intensity step map.

In addition, considering that the color channels of a common
RGB camera and projector are coupled with each other and that
decoupling them will increase the complexity of our system, we

Fig. 5. Result of geometric calibration. (a) Original chessboard pattern, (b) captured pattern, (c) warping vectors from landmarks for interpolation and (d) pattern after
geometric calibration.
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calibrate only the grey-scale images in our prototype system and
process each channel separately.

5.2. Experiment results on prototype validation

Accuracy of PSF: To verify the accuracy of our high-dimensional
motion platform-based projector–camera system, we project a
point grid onto the screen and capture the deterioration result (i.e.,
the PSF) by a randomly generated camera shake.

Comparing the synthetic blurred result (with the camera
intrinsics and trajectory known) in Fig. 8(a) and the image
captured by our high-dimensional motion platform projector–
camera system in Fig. 8(b), we can see an extremely high level
of similarity. Apparently, our system provides a promising approx-
imation and thus is of sufficient accuracy for performing the
blurring manipulation optically.

Accuracy of the non-uniform blur simulation: A sharp image is
projected onto the screen, as shown in Fig. 9(a), for which the
ground truth of the blurry version under a given camera shake is
shown in Fig. 9(b). Then, the blurry image that is optically

computed by our system is captured under the given motion
trajectory, as shown in Fig. 9(d). For a clearer comparison, we
display in Fig. 9(c) the absolute residual map between (b) and (d).
The small residue validates the accuracy of our optical computing
system. The residual errors are caused mainly by two factors: the
dead/saturation area of the response curve (shown in Fig. 7(d))
and the distortion that is not modeled in the synthesizing ground
truth blurry image, such as the radial distortion or tangential
distortion.

Non-blind deblurring with our system: We incorporate our
system into the framework of non-blind non-uniform motion
deblurring, with a randomly given 3D camera shake trajectory.
For simplicity, we adopt a non-uniform version of the RL [1,15]
deblurring algorithm in this experiment. Introducing our high-
dimensional motion platform projector–camera system, we can
replace the pixel-wise non-uniform convolution in each iteration
with two snapshots; thus, the running time can be largely
reduced. Neglecting the mechanical limitations of the system, it
takes slightly longer than 1/15 s for one iteration when using a
30 fps digital camera. In comparison, the pixel-based methods are

Fig. 6. Result of dark corner correction. (a) and (b) are captured images of a projected uniform-intensity pattern before and after calibration, respectively.

Fig. 7. Intensity response calibration. (a) Original intensity step pattern, (b) captured pattern, (c) pattern after geometric calibration and dark corner correction, and
(d) intensity response curve.
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an order of magnitude slower than our system even with the GPU
acceleration, and the patch-based methods implemented on the
GPU are also much slower than ours, especially in the case of a
large image size.

Fig. 10(a) and (e) shows the blurry image and true sharp image,
respectively. The estimated sharp images and residual maps at
iterations 1, 10, 20 are shown sequentially in Fig. 10(b)–(d) and
(f)–(h). The increasing sharpness and decreasing residue both
validate that our system can be incorporated into a deblurring
framework easily, to raise the efficiency without introducing large
artifacts.

Blind non-uniform deblurring: To verify our system for blind non-
uniform deblurring, we incorporate the system into the algorithm
by the method of Whyte et al. [12] and demonstrate its

effectiveness by displaying both several intermediate variables
and the final results. As discussed in Section 3, the variational-
based algorithm has several specific manipulations that cannot be
replaced directly but can be approximated by non-uniform con-
volution. Fig. 11 shows the comparison of some intermediate results
between the accurate computation and the approximations by our
optical computation framework. Specifically, Fig. 11(a) and (b)
shows the accurate version and our approximation of the inter-
mediate variables Lð2Þ that were described in Algorithm 2, and
Fig. 11(c) and (d) give those of the intermediate variable Lð1ÞLð2Þ.
Note that the gradient of the latent image instead of itself is used in
the kernel estimation stage; thus, each intermediate variable
includes two components, i.e., the horizontal version and the
vertical version. For convenience of computation and presentation,

Fig. 8. Testing the PSF accuracy by using a point grid pattern. (a) Synthetic result according to the projective geometry. (b) Blurred point grid pattern by our prototype optical
computing system.

Fig. 9. Result of spatially varying blurring. (a) A sharp image, (b) synthetic blurry image from projective geometry, (d) blurry result generated by our optical computing
system, and (c) absolute difference between (b) and (d).
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we place the horizontal and vertical versions of Lð2Þ and Lð1ÞLð2Þ side-
by-side in Fig. 11(a)–(d). Fig. 11(e) and (f), and (g) and (h) compare
the true version and our approximation of variables Kð2Þ and
Kð1ÞKð2Þ, respectively. Obviously, our results have a significantly high
accuracy.

The final results, which include both the camera motion and
the latent sharp image, are shown in Fig. 12, from which we can
see that our optical computation framework obtains comparable
performance. Although we apply some approximations to the
algorithm for incorporating the optical computation, the fact that

Fig. 10. Result of fast non-blind deblurring with our optical computing system. (a) Blurry image, (e) sharp image. (b)–(d) Estimated sharp image at the 1st, 10th and 20th
iterations. (f)–(h) The residual error map of (b)–(d) with respect to (a).

Fig. 11. Intermediate results of a variational-based blind deblurring algorithm under our optical computation framework. (a), (c), (e), and (f), respectively illustrate the
ground truth of four intermediate variables—Lð2Þ , Lð1ÞLð2Þ , Kð2Þ and Kð2ÞKð2Þ—in one update iteration. (b), (d), (g), and (h) displays the corresponding approximated results.
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the difference of (a) and (c) vs. (b) and (d) is not noticeable
indicates that the approximation error hardly deteriorates the
deblur performance. Overall, our non-uniform convolution frame-
work can give promising results by replacing the computation-
consuming operations with optical computations in the blind
non-uniform deblurring algorithm.

6. Summary, analysis and discussion

This paper demonstrates an optical computing system that
significantly accelerates the conventional non-uniform motion
deblurring. The framework is fast, has high accuracy and addi-
tionally has flexible extensions that are worthwhile studying in
the future. A discussion of some of the implementation details that
are worthy of note and limitations and extensions is included in
the following paragraphs.

Effect of noise. The proposed optical computing system will
inevitably introduce noise. To test the influence of sensor noise
during the optical computing process, we added some CCD noise
to the non-uniform convolution results in the corresponding step
of the RL algorithm and tested the final deblurring performance.
Here, the widely used Poisson–Gaussian noise model [40] is used,
as follows:

Io ¼ Iþðα
ffiffi
I

p
þβÞN ð17Þ

here Io is the observed image, I is the original image, and N is
independent random noise with a standard deviation that is equal
to 1, α and β are the noise-level parameters. We vary the noise
level from α¼ 0:01;β¼ 1:6e�5 to α¼ 0:08;β¼ 2:56e�5, and the
results are shown in Fig. 13. From these results, we can see that the
RL algorithm converges after 20 iterations even at the largest noise
level, and the PSNR of the deblurred images slightly decreases
as the noise level increases. Therefore, we recommend high
projector illuminance to reduce the noise effect. In addition, the

prior constraints on the latent sharp image, which are widely
used in the deblurring algorithm, are also useful in the noise
suppression.

Benefits and limitations: Benefitting from the fast light transport
and the parallelism of the imaging system, optical computing
systems can perform specific operations very fast. Specifically for
our system, each CCD unit acts as an individual computing unit,
and each snapshot can achieve parallel processing of Mega- or
even Giga-pixels; thus, the proposed optical computing system
provides a feasible and promising solution for fast non-uniform
motion deblurring.

Fig. 12. Final results for the variational-based blind deblurring algorithm. (a) and (c) 3D rotation kernel and latent sharp image estimated by the algorithm in [12]. (b) and
(d) Our final estimation of the 3D blur kernel and the latent sharp image, respectively.

α β
α β
α β
α β

Fig. 13. Effects of the sensor noise on the final performance. We synthetically add
noise to the computed blurry images to simulate noise contamination in the final
optical computing process. The bottom close-ups show the noise level α¼ 0:01; β¼
1:6e�5; α¼ 0:02; β¼ 6:4e�5; α¼ 0:03; β¼ 1:44e�4 and α¼ 0:08; β¼ 2:56e�4,
respectively.
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Our prototype has three main limitations: the high cost of the
motion platform, the limited frame rate of the camera and the
assumption of depth independence for the blur patterns. (i) In our
implementation, we adopt a high-end rotating platform that has a
large angular velocity, accelerations, payload and very high precision
(0.0011); we can also use a high-end 6-D platform for arbitrary
motion. However, both of the above platforms are too costly for
consumer imaging systems. Considering the small weight and size of
the consumer cameras, the moment of inertia of the camera that is
used in our system can be much smaller than the platform
limitation. As a rough estimation, approximately 1/40 of the upper
bound of the adopted platform is sufficient. Therefore, we can
choose a low-load motion platform, in such a way that the motion
velocity can be improved to shorten the running time further. (ii) For
the camera's frame rate, in our experiment, the Point Grey Flea2
08S2C camera can achieve 30 fps with a resolution of 1024�768
pixels, in such a way that our system can finish at most 30 times the
blurring manipulations or frame-wise inner product manipulations
within 1 s. The computation can be further accelerated by using a
higher frame-rate camera and projector. (iii) With a planar screen,
our system cannot simulate depth-dependent blurring; hence,
layered decomposition must be performed, and more snapshots
are necessary in such cases.

Promising extensions: The optical computational framework can
be applied not only to camera shake removal but also to the out-
of-focus blur. Instead of using a motion platform, a camera with a
programmable focal length can simulate the defocus blur at any of
the focal settings.

Thus far, our system cannot address image blur that is caused
by camera translation (which cannot be approximated by rota-
tion), but this concern can be addressed by replacing our platform
with a 6-axis Stewart platform. Studying an arbitrary camera
shake removal approach and building the corresponding optical
computing system are two future directions to be pursued. The
efficiency superiority of our framework will be more significant in
cases that have higher degrees-of-freedom camera shakes.

Appendix A. Supplementary materials

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2013.10.011.

References

[1] RichardsonW. Bayesian-based iterative method of image restoration. J Opt Soc
Am 1972;62(1):55–9.

[2] Fergus R, Singh B, Hertzmann A, Roweis S, Freeman W. Removing camera
shake from a single photograph. ACM Trans Graph 2006;25(3) [Proceedings of
SIGGRAPH].

[3] Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image.
ACM Trans Graph 2008;27(3) [Proceedings of SIGGRAPH].

[4] Cho S, Lee S. Fast motion deblurring. ACM Trans Graph 2009;28(5) [Proceed-
ings of SIGGRAPH Asia].

[5] Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring. In:
ECCV; 2010.

[6] Cho TS, Levin A, Durand F, Freeman WT. Motion blur removal with orthogonal
parabolic exposures. In: ICCP; 2010.

[7] Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity
measure. In: CVPR; 2011.

[8] Cho TS, Paris S, Horn, BK, Freeman WT. Blur kernel estimation using the radon
transform. In: CVPR; 2011.

[9] Cho LZS, Metaxas D, Paris S, Wang J. Handling noise in single image deblurring
using directional filters. In: CVPR; 2013.

[10] Leith E. The evolution of information optics. IEEE J Sel Top Quantum Electron
2000;6(6):1297–304.

[11] Ambs P. A short history of optical computing: rise, decline, and evolution. In:
International conference on correlation optics; 2009.

[12] Whyte O, Sivic J, Zisserman A, Ponce J. Non-uniform deblurring for shaken
images. In: CVPR; 2010.

[13] Whyte O, Sivic J, Zisserman A, Ponce J. Non-uniform deblurring for shaken
images. Int J Comput Vision 2012;98(2):168–86.

[14] Gupta A, Joshi N, Zitnick CL, Cohen MF, Curless B. Single image deblurring
using motion density functions. In: ECCV; 2010.

[15] Tai Y, Tan P, Brown M. Richardson–Lucy deblurring for scenes under projective
motion path. IEEE Trans Pattern Anal Mach Intell 2011;33(99):1603–18.

[16] Tai Y, Kong N, Lin S, Shin S. Coded exposure imaging for projective motion
deblurring. In: CVPR; 2010.

[17] Joshi N, Kang S, Zitnick C, Szeliski R. Image deblurring using inertial
measurement sensors. ACM Trans Graph 2010;29(4) [Proceedings of
SIGGRAPH].

[18] Hirsch M, Sra S, Scholkopf B, Harmeling S. Efficient filter flow for space-variant
multiframe blind deconvolution. In: CVPR; 2010.

[19] Hu Z, Yang MH. Fast non-uniform deblurring using constrained camera pose
subspace. In: BMVC; 2012.

[20] Sorel M, Flusser J. Space-variant restoration of images degraded by camera
motion blur. IEEE Trans Image Process 2008;17(2):105–16.

[21] Xu L, Jia J. Depth-aware motion deblurring. In: ICCP; 2012.
[22] Yue T, Suo J, Ji X, Dai Q. Optical computing system for fast non-uniform image

deblurring. In: CCD; 2013.
[23] Heinz RA, Artman JO, Lee SH. Matrix multiplication by optical methods. Appl

Opt 1970;9(9):2161–8.
[24] Dias A. Incoherent optical matrix–matrix multiplier. NASA Langley Res Center

Opt Inform Process for Aerospace Appl 1981:71–83.
[25] Athale RA, Collins WC. Optical matrix–matrix multiplier based on outer

product decomposition. Appl Opt 1982;21(12):2089–90.
[26] Huang H, Liu L, Wang Z. Parallel multiple matrix multiplication using an

orthogonal shadow-casting and imaging system. Opt Lett 1990;15(19):1085–7.
[27] Guilfoyle P, Stone R. Digital optical computer ii. In: Optical enhancements to

computing technology. International Society for Optics and Photonics; 1991.
[28] Lewis A, Albeck Y, Lange Z, Benchowski J, Weizman G. Optical computation

with negative light intensity with a plastic bacteriorhodopsin film. Science
1997;275(5305):1462–4.

[29] O'Toole M, Kutulakos K. Optical computing for fast light transport analysis.
ACM Trans Graph 2010;29(6) [Proceedings of SIGGRAPH].

[30] Lefebvre D, Arsenault H, Roy S. Nonlinear filter for pattern recognition
invariant to illumination and to out-of-plane rotations. Appl Opt 2003;42
(23):4658–62.

[31] Yu F, Jutamulia S, Lin T, Gregory D. Adaptive real-time pattern recognition
using a liquid crystal TV based joint transform correlator. Appl Opt
1987;26:1370–2.

[32] Levin A, Fergus R, Durand F, Freeman WT. Image and depth from a conven-
tional camera with a coded aperture. ACM Trans Graph 2007;26(3):70
[Proceedings of SIGGRAPH].

[33] Zhou C, Nayar S. What are good apertures for defocus deblurring? In: ICCP;
2009.

[34] Masia B, Presa L, Corrales A, Gutierrez D. Perceptually optimized coded
apertures for defocus deblurring. Comput Graph Forum 2012;31(6):1867–79.

[35] Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind
deconvolution algorithms. In: CVPR; 2009.

[36] Joshi N, Szeliski R, Kriegman DJ. Psf estimation using sharp edge prediction. In:
CVPR; 2008.

[37] Xu L, Zheng S, Jia J. Unnatural l0 sparse representation for natural image
deblurring. In: CVPR; 2013.

[38] Stewart C. Robust parameter estimation in computer vision. SIAM Rev 1999;41
(3):513–37.

[39] Miskin J, MacKay DJ. Ensemble learning for blind image separation and
deconvolution. Adv Independent Component Anal 2000:123–41.

[40] Foi A, Trimeche M, Katkovnik V, Egiazarian K. Practical Poissonian–Gaussian
noise modeling and fitting for single-image raw-data. IEEE Trans Image
Process 2008;17(10):1737–54.

T. Yue et al. / Computers & Graphics 37 (2013) 1039–10501050

http://dx.doi.org/10.1016/j.cag.2013.10.011
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref1
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref1
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref2
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref2
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref2
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref3
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref3
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref4
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref4
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref10
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref10
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref13
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref13
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref15
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref15
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref17
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref17
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref17
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref20
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref20
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref23
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref23
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref24
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref24
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref25
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref25
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref26
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref26
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref28
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref28
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref28
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref29
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref29
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref30
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref30
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref30
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref31
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref31
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref31
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref32
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref32
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref32
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref34
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref34
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref38
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref38
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref39
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref39
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref40
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref40
http://refhub.elsevier.com/S0097-8493(13)00152-0/sbref40

	Non-uniform image deblurring using an optical computing system
	Introduction
	Related studies
	Computationally intensive calculations in non-uniform deblurring
	MAPL,K type of method
	Variational-based methods

	Optical computing system
	A high-dimensional motion platform-based projector–camera system

	Implementation and experiment results
	Projector–camera system calibration
	Experiment results on prototype validation

	Summary, analysis and discussion
	Supplementary materials
	References




