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Abstract

Optical aberration widely exists in optical imaging sys-
tems, especially in consumer-level cameras. In contrast
to previous solutions using hardware compensation or pre-
calibration, we propose a computational approach for blind
aberration removal from a single image, by exploring vari-
ous geometric and visual priors. The global rotational sym-
metry allows us to transform the non-uniform degeneration
into several uniform ones by the proposed radial splitting
and warping technique. Locally, two types of symmetry
constraints, i.e. central symmetry and reflection symmetry
are defined as geometric priors in central and surround-
ing regions, respectively. Furthermore, by investigating the
visual artifacts of aberration degenerated images captured
by consumer-level cameras, the non-uniform distribution of
sharpness across color channels and the image lattice is
exploited as visual priors, resulting in a novel strategy to
utilize the guidance from the sharpest channel and local im-
age regions to improve the overall performance and robust-
ness. Extensive evaluation on both real and synthetic data
suggests that the proposed method outperforms the state-of-
the-art techniques.

1. Introduction

Optical aberration is one of the most common sources of
image degeneration that affects almost all lens-based imag-
ing systems. High-end lens are carefully designed to reduce
optical aberration. For example, the elements of the com-
pound lens are made of different materials to compensate
the imperfect refractive indices to reduce chromatic aberra-
tion. The surfaces of the singlet lenses are of different cur-
vatures to compensate the imperfect focusing of the spheri-
cal lenses for educing the spherical, astigmatism and coma
aberration. In general, better lens with less optical aberra-
tion are usually larger and cost much more to fabricate, thus
may not applicable in consumer-level cameras. Researchers

have also proposed various complex hardware solutions for
compensating optical aberration [1,9,10,15,17,18], but the
requirement of using special devices limits their application
range, especially for consumer applications.

Given the limitations of hardware solutions, computa-
tionally removing optical aberration has attracted strong
interests and has been exensively studied in the past
decade [3–5, 12, 13]. However, most of existing aberra-
tion correction methods [3, 5, 12] are non-blind, i.e. the
Point Spread Functions (PSFs) of the aberration need to be
calibrated beforehand. Kee et al. [5] propose a parameter-
ized model to describe the nonuniform PSFs of a zoom lens
at different focal lengths, so that only several calibration
measurements are required to be taken. Schuler et al. [12]
calibrate the nonuniform aberration PSFs using a grid of
point light sources and apply the Efficient Filter Flow (EFF)
method to perform efficient non-stationary deconvolution.
Heide et al. [3] propose to reconstruct high quality images
from aberration corrupted inputs captured by simple lenses,
with the PSFs calibrated from the degenerated images of
several random patterns. Instead of a fully pre-calibration
of the PSFs, Shih et al. [14] only measure the PSF at a
single depth, and then simulate the lens and trace the light
rays to derive the whole PSF map computationally. The
main advantage of these non-blind methods is that once the
camera is well calibrated, the model can be applied to any
input image given the optical aberrations are scene inde-
pendent [20]. However the required calibration procedures
usually demand expertise and special devices, thus largely
limit their practical applications.

For blind aberration removal, Joshi et al. [4] propose
a PSF estimation method by predicting sharp edges from
blurry ones. Rahbar and Faez [11] use the Zernike model to
describe the optical aberration and estimate the Zernike co-
efficients using Polyspectral analysis. However, they only
deal with a single channel in this work and can not han-
dle chromatic aberration. Recently, Schuler et al. [13] pro-
pose an orthonormal Efficient Filter Flow (EFF) basis based
method which is built upon a series of assumptions. This
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Figure 1. The diagram of optical principle of (a) optical aberrations and (b) the resulting PSFs.

approach works well when the assumptions hold, but may
fail in other cases, e.g., images with large spherical aberra-
tion, as we will show in our experiments. Tang and Ku-
tulakos [16] prove that the blind recovery of both optical
aberration and image depth from defocus blurred and aber-
ration corrupted images is possible, and they use the Seidel
model to approximate the aberration and simplify the prob-
lem. In general, blind aberration removal is more practi-
cal than non-blind compensation, but technically more chal-
lenging.

The goal of this work is to provide a better blind aberra-
tion correction method that achieves higher quality and bet-
ter robustness/flexibility than previous approaches. Specif-
ically, we first investigate the principle of optics and derive
the geometric priors of the PSFs, including both the global
rotational symmetry and the local reflectional/central sym-
metry. According to the global rotational symmetry, we
propose a radial splitting and warping framework to trans-
form the non-uniform aberrations in the concentric radial
regions into spatially uniform blurs. This transform largely
increases the efficiency and robustness of the algorithm, and
allows us to incorporate mature techniques that are proven
to be effective in uniform deblurring. In addition, we pro-
pose a more thorough local symmetry prior that includes
both the reflection symmetry used in [13] and a central sym-
metry constraint. This enables us to handle both the off-axis
PSFs (astigmatism and coma) and near-axis PSFs (spherical
and chromatic).

Beside the geometric priors, we also introduces new vi-
sual priors. Inspired by the observation that in an optically
aberrated image, sharpness varies spatially as well as across
color channel, we propose to conduct both kernel estimation
and deconvolution in a sharp-to-blur order. Specifically, we
restore the sharpest channel and local region first, and then
use the result to guide the processing of other regions and
channels. The guidance is implemented via two visual pri-
ors of the degenerated images: cross-channel constraint on
the latent sharp image and the smoothly-varying constraint
on the blur kernels. This strategy and related visual priors
significantly boost the performance of our method, espe-

cially for the seriously deteriorated images.
Compared with Schuler et al. [13]’s method, the pro-

posed algorithm differs in three main aspects: (1) it can
handle more types of aberrations across the image plane,
especially the spherical aberration in the center region and
coma in the surrounding regions. (2) Benefiting from the
sharp-to-blur strategy, the proposed method achieves better
performance and robustness, especially for the chromatic
aberration. (3) The radial splitting and warping framework
simplifies the problem and gives rise to a great potential in
terms of computational efficiency.

2. Optics-inspired Geometric Priors of PSF
In this section, we analyze the principle of optics to de-

rive the geometric priors of the aberration PSFs. Fig. 1(a)
shows the light paths that cause the spherical, coma and
chromatic aberrations. Generally, lens-based imaging sys-
tems are axisymmetric with respect to the optical axis, thus
the light paths of a well manufactured consumer-level cam-
era lens are also axis-symmetric, i.e., the off-axis points
with the same distance to the optical axis have the same
optical transform function (OTF). In addition, the OTF at a
specific point should also be locally symmetric with respect
to the line connecting it to the projection center, which we
assume is the same as the image center. Neglecting the axis-
asymmetric error due to imperfect lens manufacturing, all
types of lens aberrations, e.g. spherical aberration, coma,
and chromatic aberration, would cause PSFs that are glob-
ally rotational symmetric and locally central/reflective sym-
metric.

To describe these two geometric priors of PSFs, we pro-
pose a radial splitting and warping framework and a unified
symmetry constraint, as described below.

Radial Splitting and Warping Framework The global
rotational symmetry has been incorporated into a series of
human designed basises in Schuler et al. [13]. In this work,
we propose a radial splitting and warping framework that
is more flexible than the EFF-basis-based method. Consid-
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Figure 2. The diagram of the proposed concentric ringwise split-
ting and warping.

ering that the pixels in a narrow ring region have roughly
the same PSF with different rotations, if we rotate the local
patch of all pixels properly, the PSFs become uniform. Intu-
itively, by decomposing the image plane into a series of con-
centric ring regions, and further warping them into rectan-
gular subimages, in which the y-axis is the radius dimension
and the x-axis is the angular dimension, the non-uniform
aberration becomes uniform in these rectangle subimages,
as shown in Fig. 2. Each warped subimage thus can be han-
dled by previous uniform PSF estimation and deconvolu-
tion algorithms. In this work we use Cho and Lee [2]’s ap-
proach for uniform PSF estimation and deconvolution given
its good performance and high efficiency.

Fortunately, the PSFs caused by aberration are usually
quite smooth, thus the sampling step during image warp-
ing does not affect the PSF estimation too much. To pre-
vent from losing information caused by sampling and the
following processing steps, we expand each subimage to
make them partially overlap. For a ring region whose in-
ner and outer radius are ro and ri, respectively, the width
and height of the warped rectangular image isW = 2πro ·c
and H = (ro − ri) · c, where c = 1.1 empirically. Here c
is an over-sampling ratio to ensure all the image pixels are
sampled at subpixel level. As a result, the sampling errors
are generally at sub-pixel scale.

Symmetry Constraint For a point on the optical axis,
the light paths through it are axis-symmetric, resulting in
a central symmetric PSF (middle of Fig. 1(b)). For off-axis
points, each light path across it has a reflection symmetric
version with respect to the meridian plane across the optical
axis and the off-axis point, which leads to reflection sym-
metric PSFs, as shown in Fig. 1(b).

Note that the local reflection symmetry, which states that
the local PSF at location x is reflection symmetric with re-
spect to the line connecting the principle point and x, has al-
ready been utilized in Schuler et al. [13]’s algorithm. How-
ever, this constraint fits the off-axis PSFs very well, but does
not apply to the near-axis PSFs. Therefore, in this paper, we
propose a more general constraint addressing both cases.

Specifically, in our radial split framework, the PSF of the
center patch (a solid circle witgh no warping) is constrained
to be central symmetric, while the reflection symmetry con-
straint is applied for the PSFs in the outer rings.

Next, we formulate these two symmetry constraints in
a unified mathematical term. The basic idea is to divide
the PSFs into sets according to the specific type of symme-
try, and then minimize the summation of intra-set variances.
Mathematically it is defined as:

Cksym(K)=λs
∑
j

∑
i∈Sj

(K(i)− 1

|Sj |
∑
m∈Sj

K(m))2, (1)

where K denotes the PSF, j indices the sets Sj whose size is
|Sj |, and i is the index of the elements in a set. The weight
of symmetry constraint λs is set to be 20 in this paper.

For reflection symmetry, we force each entry of the PSF
to be the same as its reflection counterpart:

Cksym(K)=λrs
∑
x,y

(K(x, y)− 1

2
(K(x, y) + K(−x, y)))2,

(2)
where (x, y) is the 2D Cartesian coordinate of the PSF, and
(−x, y) is the corresponding reflection symmetric coordi-
nate with respect to the y-axis.

For the central symmetric PSFs near the optical axis, the
symmetry constraint becomes:

Cksym(K)=λcs
∑
r,θ

(K(r, θ)− 1

|Θ|
∑
θ

K(r, θ))2, (3)

where (r, θ) is the polar coordinate, and |Θ| is the number
of quantization levels of angular coordinate θ. In this paper,
we uniformly samples 16 angles from 0o to 360o.

3. Visual Priors

In this section, we investigate image priors in the aberra-
tion corrupted images. By collecting and examining a large
number of images captured by multiple types of consumer-
level devices, e.g. mobile phones, pocket cameras, and sin-
gle lens reflex cameras, we found that almost all the lenses
are designed to have good imaging quality in the center re-
gion of the image, and also in a certain color channel, which
usually is the green channel. Besides, the aberration PSFs
vary smoothly in the spatial domain. According to these
facts, our approach uses the relationships among the image
channels and adjacent PSFs to improve the overall aberra-
tion correction performance.

In this work, after radial splitting and warping, we use
the Normalized Sparsity Measure (NSM) L1/L2 (see [8]
for details) to measure the sharpness of each channel of the
warped image patches. Intuitively, it is easier to restore a
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Figure 3. Diagram of the proposed sharp-to-blur strategy.

sharper image than a more blurry one by blind deconvolu-
tion, due to the smaller amount of lost frequencies and re-
duced illposedness. Therefore, we propose a sharp-to-blur
strategy for lens aberration removal. As shown in Fig. 3,
the sharp-to-blur strategy consists of two main information
propagation directions: (1) from a sharp channel to more
blurry channels for non-blind image deconvolution, and (2)
from sharp regions to more blurry ones for PSF estimation.
These two steps will be described in detail in the following.

Sharp-Channel Prior For images capturing nature
scenes, discontinuities in different color channels (RGB or
multispectrum) usually occur at the same positions, espe-
cially pixels on image edges. This property is extensively
used as cross-channel constraint in various image recon-
struction tasks, such as denoising [6] and non-blind aberra-
tion removal [3]. However, in these methods all the color
channels are processed together, thus complex optimiza-
tion algorithms (e.g. Iteratively Reweighted Least Squares
(IRLS) and Optimal First-Order Primal-Dual (OFOPD)) are
needed. Although these methods can achieve good re-
sults, the high computational cost hampers their applicabil-
ity in blind deconvolution, where the non-blind deconvo-
lution procedure needs to be repeatedly applied for kernel
estimation.

In this paper, we propose to restore the sharpest chan-
nel first, and then use it as the reference channel to restore
the other ones. Specifically, for an image region p to be re-
stored, its sharpest channel sc is determined by selecting
the one with the smallest NSM. For the sharpness chan-
nel ch = sc, we set Csc(Lp,sc) = λl||∇Lp,sc||1 as the
smoothness constraint in deconvolution (Lp denotes the la-
tent sharp image patch p). For other channels (i.e. ch 6= sc),

the result of the sharpest channel is used as a reference for
restoration as:

Cch(Lp,ch) = λl||∇Lp,ch||1 + λch||∇Lp,ch −∇Lp,ref ||,
(4)

where ∇Lp,ref is the scaled gradient map of the sharpest
channel defined as:

∇Lp,ref = sign(∇Bp,ch∇Bp,sc)
|∇Bp,ch|∇Lp,sc
|∇Bp,sc|+ ε

. (5)

where ∇Bp,ch and ∇Lp,ch are the gradients of observed
and restored single channel image patch p, ε is a small con-
stant to prevent the denominator to be zeros and is set to be
0.01 in our system.

Spatially-constrained Kernel Estimation Schuler et al.
[13] assume that PSFs vary smoothly and their size is scaled
linearly with the distance to the image center. However
the linear scale assumption fails for the combined aberra-
tions. In this work we relax this assumption by only assum-
ing high similarity between the PSF of a patch and that of
its neighboring patch under a simple transform. Based on
this assumption while adopting the sharp-to-blur strategy,
we propose to use the transformed version of the PSF com-
puted from the previous sharper patch as the reference for
the current patch, which leads to the following energy term:

Ckadj(K) =
∑
p

λ
kp
adj ||Kp − Tp−1→p ·Kp−1||2, (6)

where Tp−1→p is the transformation between adjacent PSFs
defined as:

Tp−1→p =Wrp · W−1
rp−1

, (7)

where Wrp is the warping of the p-th concentric radial re-
gion from the origional image space to the rectangle subim-
age, and W−1

rp−1
is the inverse warping of the (p − 1)-th

subimage from the rectangle subimage space to the ori-
gional image space. Practically, we put the kernel of the
(p − 1)-th subimage at (rp−1,−90o), warp it back to the
original image, move it to (rp,−90o), and then warp the
kernel to the p-th subimage.

4. Optimization
Incorporating both the geometric and visual priors, our

final objective function for aberration removal is:

E =
∑
p

{ ||Lp ∗Kp −Bp||2 + Clch(Lp) + Cksym(Kp)

+ Ckpadj(Kp,Kp−1) } ,
(8)

where Bp and Lp are the observed and restored image patch
p. We now describe how to optimize this objective function.



4.1. Kernel Estimation

In the kernel estimation step, we follow the sharp-to-blur
strategy to estimate the kernels from subimages sequen-
tially. For a specific region p, Ckpadj(Kp,Kp−1) is quadratic,
and thus can be computed by pixelwise division in Fourier
domain, together with the data term. To apply the symmetry
constraint Cksym(Kp), an auxiliary variable Q is introduced,
and the energy function becomes:

E(Kp) = ||Lp ∗Kp −Bp||2 + Ckpadj(Kp,Kp−1)

+ β||Kp −Q||2 + Cksym(Q),
(9)

where β is a weighting factor increasing with iteration. In
our implementation, β is initialized as 20, and doubles in
each iteration. Specifically, Eq. 9 can be minimized by iter-
atively solving two subproblems,

a) Kt+1
p = arg min

Kp

||Lp ∗Kp −Bp||2 + β||Kp −Qt||22

+λ
kp
adj ||Kp −Kref ||22,

b) Qt+1 = arg min
Q

Cksym(Q) + β||Kt+1
p −Q||22,

(10)
until the algorithm converges when the quadratic sum of
update errors is smaller than 1e-6. Here, Kref = Tp−1→p ·
Kp−1. Empirically, the algorithm usually converges in less
than 10 iterations. The first sub-problem can be solved in
Fourier domain as:

Kt+1
p = F−1(

F(Lp)
∗F(Bp) + βF(Qt) + λ

kp
adjF(Kref )

F(Lp)∗F(Lp) + β + λ
kp
adj

)

(11)
where F(·) is the Fourier transform, and ∗ is the complex
conjugate operation. The second sub-problem only refers
to the symmetry constraint, and there exists a closed-form
solution in the case of either reflection or central symmetry.

As for reflection symmetry, Eq. 10−b) can be divided
into a series of two-tuples and each tuple contains only a
pair of points that have reflection symmetry. The solution of
sub-problem b) can be achieved by optimizing all the two-
tuples individually. For a single two-tuple, the optimization
objective is:

arg min
Qij ,Qi′j′

E(Qij , Qi′j′)=λrs(Qij−Qi′j′)2

+
1

4
β(Qij−Kij)

2+
1

4
β(Qi′j′−Ki′j′)

2
(12)

where Qij , Qi′j′ , Kij and Ki′j′ are the abbreviations for
Q(i, j), Q(i′, j′), K(i, j) and K(i′, j′) respectively. To op-

timize Eq. 12, we set its partial derivative to be zero:

∂E

∂Qij
= 2λrs(Qij −Qi′j′) +

1

2
β(Qij −Kij) = 0

∂E

∂Qi′j′
= −2λrs(Qij −Qi′j′) +

1

2
β(Qi′j′ −Ki′j′) = 0

(13)
and derive the closed form solution as:

Qij =
(β/4λrs + 1)Kij +Ki′j′

2 + β/4λrs

Qi′j′ =
(β/4λrs + 1)Ki′j′ +Kij

2 + β/4λrs
,

(14)

which can be calculated efficiently.
In the case of central symmetry, to solve subproblem b),

we also divide Eq. 10−b) into a series of tuples with the
elements coupled together fall in the same tuple. The single
tuple objective function is:

arg min
Qrθ|θ∈Θ

E(Qr)=λrs
∑
θ∈Θ

(Qrθ−Qr)2+β(Qrθ−Krθ)
2,

(15)
where Qr denotes the average with respect to θ. By setting
its partial derivative ∂E(Qrθ)

∂Qrθ
|θ∈Θ to be zero, Eq. 16 can be

optimized by solving a linear equation system,


(|Θ|−1)2

|Θ| + β
λcs

(1−|Θ|)
|Θ| · · ·

(1−|Θ|)
|Θ|

(|Θ|−1)2

|Θ| + β
λcs

· · ·
...

...
. . .

 =
β

λcs

 Krθ1

Krθ2
...

 .
(16)

In our implementation we set |Θ| = 16.

4.2. Non-blind Deconvolution

In the final non-blind deconvolution step, we compute
the latent image sequentially on color channels according
to the sharp-to-blur strategy. For a single image patch, the
objective function is:

E(Lp) = ||Lp ∗Kp −Bp||2 + Clch(Lp). (17)

where Bp,ch and Lp,ch are the observed and restored sin-
gle channel image patch p. The fast iterative shrink-
age/thresholding algorithm (FISTA) [7, 19] is applied to
solve the sharpest channel of Lp. For other channels, the

reference part ∇Lp,ref = sign(∇Bch
p · ∇Bsc

p )
|∇Bchp |∇Lscp
|∇Bscp |+ε

in Eq. 4 is constant after solving the sharp channel. By
extending Krishnan and Fergus [7]’s algorithm, we split
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Figure 4. Top: a synthetic image generated by simulating the light
transport of a single biconvex lens, with ground-truth blur kernels
in high-lighted regions. Bottom: recovered latent image and PSFs
by our algorithm.

Eq. 17 into two sub-problems:

a) Lt+1
p,ch = arg min

Lp,ch

||Lp,ch ∗Kp,ch −Bp,ch||2

+ β||∇Lp,ch − Ztp,ch||22
b) Zt+1

p,ch = arg min
Zp,ch

λch||Ztp,ch −∇Lp,ref ||1

+ λl||Ztp,ch||1 + β||∇Lt+1
p,ch − Ztp,ch||22.

(18)

where Zp,ch is the auxiliary variable (another version of
∇Lp,ch), ∇Lp,ref is the scaled gradient of deconvolved
sharpest channel defined in Eq. 5.

The sub-problem a) of Eq. 18 can be computed by the
pixelwise division in Fourier domain. To solve sub-problem
b), we form a 2-D lookup table by recording the minimum
Zp,ch with given ∇Lp,ch and ∇Lp,ref . In practice, both
∇Lp,ch and ∇Lp,ref are uniformly sampled from -1 to 1
with 100 samples, and the minimum solution of Eq. 18 b)
with each combination of ∇Lp,ch and ∇Lp,ref are com-
puted numerically, i.e., a 2-D lookup table with 100×100
entries are formed. The minimization of Eq. 18−b) can be
achieved efficiently by searching the lookup table. Note
that the weights λl and λch are constant, but β increases
with iteration, so for each β we need to build a separate 2-D
lookup table. Fortunately, β needs to be updated only sev-
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Figure 5. Comparison on the image captured by Sony Cyber-shot
DSC-P93A 8mm f/5.6 lens.

eral times during the whole algorithm, so a few Mega-bytes
memory block is sufficient for storing all the tables.

5. Experiment Results
We verify our algorithm on a variety of images, includ-

ing both synthetic and real-world data, and compare the re-
sults with state-of-the-art algorithms.

A synthetic example. We test the proposed algorithm on
a synthetic image generated by tracing the light rays across
a biconvex lens camera, as shown in Fig. 4(top), which is
severely degraded by various aberrations such as spherical
aberration, coma aberration and chromatic aberration. The
recovered latent image as well as PSFs of our algorithm are
shown in Fig. 4(bottom). The result shows that the proposed
algorithm achieves high quality result in all image areas and
can correct all types of aforementioned aberrations.

In terms of computational efficiency, the proposed al-
gorithm processes each of the images in Fig. 4 (1024*768
pixels) within around 1.5 minutes, using our Matlab imple-
mentation on a PC with Intel Core i5 CPU at 3.2GHz and
8G RAM.

Comparisons on real data. We apply the proposed
method on real captured images as shown in Fig. 5, 6, 7
and 8. Comparisons with various state-of-the-art algorithms
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Figure 6. Comparison on an image captured by a Canon 24mm f1/4 lens (provide by Schuler et al. [12]).

Blurry Kee et al. [5] (non-blind) Schuler et al. [13] Our method

Figure 7. Comparison on an image captured by a Canon Rebel T2i at 18mm f/3.5 (provide by Kee et al. [5]).



Blurry Heide et al. [3] (non-blind) Schuler et al. [13] Our method

Figure 8. Comparison on an image captured by a simple lens camera (provide by Heide et al. [3]).

are provided in these figures.
The input image in Fig. 5 is captured by a consumer

pocket camera (Sony Cyber-shot DSC-P93A 8mm f/5.6
lens), and the chromatic aberration is the main source of
deterioration of this image. The result of Schuler et al. [13]
and ours are shown in the middle and bottom row, respec-
tively. We see that the proposed approach achieves a little
sharper result at the image center, while removes the chro-
matic aberration much better at the bottom-right corner of
the image.

In both Fig. 6 and Fig. 7, the input images are captured
by Single-lens reflex (SLR) cameras. We see that our algo-
rithm produces higher quality results than the state-of-the-
art methods, even the non-blind ones (Schuler et al.’s [12]
and Kee et al.’s [5]). Benefiting from the proposed sharp-
to-blur strategy, our method generates significantly higher
quality results especially in regions with large chromatic
aberrations, because the sharpest channel can offer more ad-
ditional information for the deconvolution of the rest chan-
nels in these case.

Fig. 8 shows comparisons on an aberrated image pro-
vided by Heide et al. [3]. It is a challenging example for its
extremely large blur. We see that our result is only slightly
worse than that of the non-blind algorithm [3], but is much
better than that of Schuler et al. [13]. The inferior recovery
by [13] is due to the fact that their assumption on PSFs does
not hold in this case with spherical aberration, meanwhile,
our algoirthm can handle the near-axis PSFs very well by

utilizing the central symmetry constraint. Besides, the pro-
posed algorithm makes full use of the cross-channel infor-
mation and the smoothly-varying kernel constraint to derive
the promising result in the off-axis regions.

6. Conclusion and Discussions

In this paper, we propose a new blind deconvolution ap-
proach that utilizes and incorporates various geometric and
visual priors for optical aberration removal from a single
image. Our method includes a novel radial splitting and
warping framework to convert the non-uniform blur prob-
lem into multiple uniform ones, and a sharp-to-blur strategy
for improved performance and robustness. Comparisons
with the state-of-the-art algorithms verify the effectiveness
of the proposed algorithm.

The proposed algorithm is robust against small noise due
to the L1 sparse prior and cross-channel constraint. For the
same reason, the approach is also robust to minor compres-
sion artifacts. However, severe nonlinear camera response
may cause the algorithm to fail, since the image formation
model is essentially linear.

As future work, we plan to explore how to jointly correct
optical aberrations from multiple images captured by the
same camera.
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