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Efficient Method for High-Quality Removal of
Nonuniform Blur in the Wavelet Domain
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Abstract— This paper presents a novel nonuniform deblurring
approach, which defines the blur model and calculates regular-
ized nonuniform deconvolution in the wavelet domain to achieve
high efficiency and high accuracy simultaneously. Targeting high
computation efficiency, we derive a wavelet-domain hierarchical
blur model, which can be calculated efficiently by exploiting
the sparsity property of natural images in the wavelet domain.
Correspondingly, the blur model is incorporated into a multilayer
framework and at each layer spatially varying step sizes are
introduced to further accelerate the convergence of the algorithm.
In addition to the efficiency advantages, the proposed approach
deals with intensely nonuniform blur with high accuracy due to
the intrinsic tight supportness of wavelet basis. We conduct a
series of experiments and comparisons to validate the efficiency
and effectiveness of our algorithm.

Index Terms— Deblur, nonblind, nonuniform, wavelet.

I. INTRODUCTION

IMAGE blur is a common degeneration and has been a
hot topic for decades. Restoring the latent sharp image

from its blurred observation is often formulated as a decon-
volution with a given/estimated point spread function (PSF)
(also known as blur kernel). Spatially uniform deconvolu-
tion algorithms have been studied thoroughly, either for 2D
images [1]–[14] or for 3D volume data [15]–[17]. With
the spatial resolution of digital images ever growing, many 
researchers attempt to develop efficiently deconvolution algori-
thms [7], [8], [17]–[21]. However, most of these algorithms 
focus on uniform blurred images and are based on the fast
Fourier transform (FFT), while most commonly observed
degradations (e.g., motion blur, defocus, optics aberrations, 
and atmospheric turbulence) are spatially varying and cannot
be processed by the Fourier transform.

To handle the widely existing nonuniform blur in real 
cases, various nonuniform deblurring algorithms [22]–[30]
are proposed recently, but most of them (except for 
[22], [26], and [30]) focus on blur kernel estima-
tion rather than nonblind deblurring module. Besides,
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Zhang and Hirakawa [31] proposed a novel blindly nonuni-
form restoration algorithm in the double discrete wavelet
transform, which is, however, restricted to the parametric blur
model (e.g., motion blur with a constant direction and speed).
In spatially varying nonblind deblurring, the spatial domain
blur model (nonuniform convolution) has to be calculated
repeatedly to fit the observation and update the restoration
result according to the fitting residuals. In general, the existing
methods resort to either pixelwise blur model [22]–[26] or
patch-based blur model [27]–[30].

The pixelwise model computes the local blur kernels pixel
by pixel and can handle arbitrary nonuniform blur, but suf-
fers from extremely high computational cost and demanding
storage (the local blur kernels are usually stored in memory
for computation efficiency). A digital image usually consists
tens of megapixels and the 3D volume data are even orders
of magnitude larger, so the speed of the nonblind deblurring
algorithm becomes more and more important. However, the
nonuniform blur model cannot be accelerated by FFT and,
thus, is quite time-consuming. Differently, the patch-based
model is fast and facilitates the nonuniform extension of uni-
form deconvolution algorithms by assuming the blur kernels
vary smoothly. For example, Löfdahl [30] uses the patch-based
FFT to accomplish fast nonuniform deblur of multiple images
and Hirsch et al. [27] proposed the efficient filter flow (EFF)-
based algorithm, which approximates the nonuniform deblur-
ring using multiple local filters (implemented by FFT). In spite
of their high efficiency, these patch-based approaches are of
limited precision in modeling abruptly changed degradation
processes, even with densely overlapping patches. Overall, the
existing nonuniform blur models are either extremely slow
or cannot handle intensely varying blur, and there still lack
sufficient investigations for efficient and high-quality spatially
varying nonblind deblurring so far.

To achieve efficient and high-quality nonuniform deblurring,
we propose to derive a blur model and conduct deblurring
in a transform domain satisfying two properties: 1) in which
natural images are of sparse representation, and thus, the
calculation is of high efficiency and 2) having excellent time/
space-frequency performance (i.e., the tight support region) to
ensure high computation accuracy even for abruptly varying
blurred cases.

A. Wavelet Domain Blur Model

Essentially, the patch-based methods can be regarded as a
kind of 2D short time/space Fourier analysis (STFA), and
the accuracy for dealing with nonuniform blur depends on
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the time/space-frequency resolution (patch size). Targeting for
calculating the nonuniform blur model more accurately with
high computation speed, we try to formulate the blur model
in a transform domain having better time/space-frequency
resolution than STFA, and the wavelet analysis becomes
our top choice for handling nonuniform blurring due to its
excellent time/space-frequency resolution, i.e., tight support
region. Furthermore, in wavelet domain, most energies con-
centrate on a small portion of large coefficients, while most
of the zero/close-to-zero entries can be neglected without
affecting the visual quality. Making use of this sparsity of the
wavelet coefficients of natural images, the nonuniform blur
operation, i.e., the most time-consuming module in the exist-
ing nonuniform deblurring algorithms, can be significantly
accelerated. This acceleration consists with the intuition that
the image patches are not equally important in deblurring,
e.g., both the blurring and deblurring operations are meaning-
less for the textureless regions, where the corresponding high-
frequency wavelet coefficients happen to be small and can be
ignored. Considering efficiency and accuracy jointly, we derive
a nonuniform blur model based on decimated (nonredundant)
wavelet representation, which can accelerate the computation
of nonuniform blur model significantly and is of high accuracy.

Note that Escande et al. [32], [33] proposed a fast nonblind
deblurring algorithm utilizing the sparsity of nonuniform blur
kernels in the wavelet domain. Since they approximate the blur
kernels by attenuating their small wavelet coefficients, their
approach is applicable for some specific cases with kernels
varying slowly and being smooth as well. These assumptions
largely limit the algorithm’s applications to image degrada-
tion caused by camera shake, complex object motion, and
coded aperture. Differently, our approach utilizes the sparsity
in wavelet representation of natural images instead of blur
kernels, and thus can handle nonsmooth kernels (as we show
in experiments). Therefore, our approach largely differentiates
from Escande et al.’s [32], [33] method in both the basic
idea and technical details. However, the proposed method is
not incompatible with Escande et al.’s [32], [33] algorithm.
For the cases satisfying their assumptions, two strategies can
potentially be adopted jointly to achieve higher efficiency.

B. Wavelet-Based Efficient Nonuniform
Multilayer Optimization

Deblurring is an ill-posed problem, so priors are required
to regularize the results and make the problem resoluble.
Considering that we use a wavelet domain nonuniform blur
model, a prior in the wavelet domain rather than in the spatial
domain is a natural choice for us.

To solve the deblurring problems with wavelet domain
priors, Daubechies et al. [34] proposed thresholding Lander-
weber (TL) algorithm that demonstrates high performance,
and proved its convergence mathematically. Similarily, many
deblurring algorithms use the wavelet domain sparsity priors
by alternating between image deconvolution operation in spa-
tial domain and coefficient thresholding in wavelet domain,
such as in [20] and [35]–[37]. Although regularization in
wavelet domain helps deblurring, but most existing methods

still perform deconvolution in spatial domain, and thus are
quite time-consuming for nonuniform deblurring. Differently,
our blur model is directly computed in the wavelet domain, and
the sparsity of wavelet coefficients is intensified by applying
thresholding operation, so our deconvolution works much
faster.

As the data scale increases, the slow convergence of a
TL algorithm limits its applications and researchers begin to
explore speeding up strategies. Vonesch and Unser [7], [17]
proposed a wavelet domain multilayer thresholding algo-
rithm. By extending Vonesch and Unser’s method [7], [17],
we propose the nonuniform step sizes to form a multilayer
solver for hierarchically optimizing the objective function in
the wavelet domain. This method can significantly accelerate
the convergence and reduce the iteration number. In addition,
it is worth noting that although the proposed algorithm focuses
on the 2D images degraded by camera motion caused nonuni-
form blur, it can be applied to any nonuniform blurring cases
on multidimensional data.

In summary, this paper addresses the high computational
cost of high-quality nonuniform deblurring by two strategies:
1) formulate a wavelet domain blurring model, which can
be used for efficient nonuniform restoration and 2) propose
a wavelet domain multilayer framework as well as the nonuni-
form step size maps for solving the nonuniform deblurring
problem with wavelet domain sparsity prior. Compared with
most existing pixelwise nonuniform deblurring approaches,
our method is significantly faster, while keeps comparable
performance (and its performance is much better than the
patchwise methods).

The rest of this paper is organized as follows. Section II
presents the proposed nonuniform blur model in the wavelet
domain. Section III describes the wavelet regularized multi-
layer deblurring algorithm. The experiment results are demon-
strated in Section IV. Finally, the conclusion is drawn
in Section V.

II. APPROXIMATE NONUNIFORM BLURRING

MODEL IN WAVELET DOMAIN

The existing wavelet-based deblurring methods usually use
the sparisty of wavelet coefficients as a regularization, while
this section formulates our wavelet domain nonuniform blur
model, which provides the basis for efficient nonuniform
convolution and deconvolution.

A. Redundant Wavelet Transform Uniform Blur Kernels

Denoting L as the latent sharp image, we can formulate
its redundant wavelet transform as L = ∑

j,m Ŵ j,mĈ j,m .

Here, Ŵ j,m is a Toeplitz matrix denoting the redundant
wavelet reconstruction matrix of the ( j, m)th subband, and
Ĉ j,m denotes the corresponding redundant wavelet coeffi-
cient vector, with j and m indexing the scale and subband,
respectively. Mathematically, L blurry version can be calcu-
lated by multiplying it with a blurring matrix H. If the blur
kernels are spatially uniform, the blurring matrix H is also a
Toeplitz matrix. Therefore, in this case, the blurring matrix
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Fig. 1. Diagram of our wavelet domain nonuniform blurring model. The image is degraded by a motion blur randomly generated with six DOFs. For
visualization, the intensity levels of the several subbands are modified.

can be applied to wavelet coefficients by simply exchanging
the order of the matrix multiplication

HL = H
∑

j,m

Ŵ j,mĈ j,m =
∑

j,m

Ŵ j,mHĈ j,m (1)

and we can utilize the sparsity of wavelet coefficients to
develop efficient deblurring approaches by just performing the
blurring process on the nonzero coefficients.

However, directly applying this wavelet domain blur model
for nonuniform deblurring suffers from two problems: 1) the
redundant wavelet decomposition does not reduce (increase
instead) the number of coefficients, but simply replacing the
redundant wavelet Ŵ j,m with its nonredundant counterpart
W j,m encounters the nonsquare problem of reconstruction
matrix and 2) Toeplitz assumption of blur matrix H does not
hold for nonuniform blur kernels. The above two problems
make it not trivial to exchange the order of H and W in (1).

B. Extension to Nonredundant Wavelet
Transform by Preupsampling

The reconstruction using nonredundant wavelet coefficients
can be expressed by

L =
∑

j,m

WT
j,mC j,m (2)

where the nonredundant wavelet decomposition matrix
W j,m ∈ RN×(N/2 j ) is a short matrix and its transpose WT

j,m

(i.e., the reconstruction matrix) is a tall matrix. To address
this nonsquare problem, we apply upsampling matrix U,
which doubles the length of a column vector by inserting
zeros between elements, to the coefficients C j,m and the
corresponding wavelet reconstruction matrix WT

j,m , and then,
(2) becomes

L =
∑

j,m

(U j W j,m)T (U j C j,m) (3)

where U j means upsampling j times and the length of
coefficient vector C j,m is increased by 2 j after premultiply-
ing U j . Similarly, the nonredundant wavelet reconstruction
matrix WT

j,m turns into a square Toeplitz matrix (U j W j,m)T

after upsampling.
Suppose H is also a Toeplitz matrix, the blurring operation

can be performed in the wavelet domain by exchanging two
Toeplitz matrices

HL = H
∑

j,m

(U j W j,m)T (U j C j,m)

=
∑

j,m

(U j W j,m)T H(U j C j,m). (4)

For convenience, in the following, we use W and C to denote
UW and UC for short, respectively.

Fig. 1 shows the diagram of preupsampling scheme for
our wavelet domain blur model, including mainly three steps:
1) upsample the nonredundant wavelet coefficients in different
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subbands to the original undecimated size; 2) apply blurring
operation in the upsampled subbands; and 3) reconstruct the
final blurry image by using the upsampled wavelet recon-

struction matrix (U j W j,m)T . Because wavelet coefficients
are sparse and preupsampling will not decrease the sparsity,
the above wavelet domain blur model can save plenty of
computation than on the original image.

C. Extension to Nonuniform Blurring

The blurring matrix H of nonuniform blur is not Toeplitz,
and we cannot exchange it with wavelet decomposition
matrix W as in the above derivations. However, in the follow-
ing, we will show mathematically that for common nonuni-
form deblurring, if H can be regarded as a locally Toeplitz
matrix, the difference between exchanged and unexchanged
multiplication is limited. Correspondingly, the scheme in Fig. 1
becomes a close approximation.

To analyze the precision of our wavelet domain blur model
for nonuniform blurs, we define the approximation error

εr,c = ((HW)r,c − (WH)r,c)
2 (5)

where ε is the error matrix, and r and c are the row and
column indices.

Given an N × N sized Toeplitz matrix W, which only
has 2N − 1 degrees of freedom (DOFs), for each element
Wi, j , we have Wi, j = Wi+n, j+n , with n = −N, . . . ,
−2,−1, 0, 1, 2, . . . , N . Hence, the element Wi, j can be
indexed by Wi− j for convenience, and

εr,c =
((

∑

s∈S

Hr,sWs,c

)

−
(

∑

s∈S

Wr,sHs,c

))2

=
((

∑

s∈S

Hr,sWs−c

)

−
(

∑

s∈S

Wr−sHs,c

))2

=
((

∑

s ′∈S

Hr,c+s ′Ws ′

)

−
(

∑

s ′′∈S

Ws ′′Hr−s ′′,c

))2

=
((

∑

s∈S

Ws(Hr,c+s − Hr−s,c)

))2

(6)

where S is the support region of wavelet basis. If and only
if H is Toeplitz, Hr,c+s = Hr−c−s = Hr−s,c and the error ε
equals to zero.

Although for nonuniform blur Hr,c+s �= Hr−s,c, the wavelet
basis is tightly supported, and thus, for a single elements
HWr,c, the support region S of wavelet basis Ws is in a
small neighborhood. Therefore, if the blur matrix H is locally
Toeplitz, we have

∀s ∈ {s|Ws �= 0}, Hr,c+s � Hr−s,c. (7)

In other words, if the blur can be regarded as locally uniform
in the support regions of the wavelet basis, our wavelet
domain blur model can well approximate the spatial domain
blur model. The final accuracy of our model depends on the
size of support region of wavelet basis. Benefiting from the
tightly supported basis, the wavelet analysis has excellent

time/space-frequency resolution and thus can handle the
nonuniform blur much more accurately than the existing patch-
based methods, whose proper patch size is significantly larger
than the support region of wavelet basis. In addition, our
experiments show that with the patch size decreasing, the
patch-based algorithms have to deal with more patches and
would lose its advantage in running speed.

Note that in this paper, the blurring matrix H is computed
from a unified camera motion (as the 6D motion trace recorded
by an inertial sensor [23] or derived by a blind motion
estimation algorithm [38]). Since the wavelet coefficient C is
sparse, the columns in the blurring matrix H (describing the
local blur kernels) corresponding to the zero elements of C
are not required to be computed. Conversely, all the local blur
kernels of the nonzero elements are computed to make sure
the accuracy.

III. WAVELET REGULARIZED MULTILAYER DEBLURRING

Based on the wavelet domain blur model, many existing
nonblind deblurring methods can be accelerated by replacing
the spatial convolution module directly. To further utilize
the rapidity brought by the sparsity of wavelet coefficients,
we propose a multilayer wavelet domain deblurring framework
corresponding to the hierarchical wavelet decomposition.

Most deblurring methods using wavelet regularization can
be formulated as

J (L∗) = arg min
L

||HL − B||22 + λ||C||1 (8)

where B is the blurry image, C is the wavelet coefficients of
latent image L, and λ is the weighting factor. Mathematically,
the TL algorithm alternatively performs Landweber updates

Lt+1 = Lt + τHT (B − HLt ) (9)

and wavelet coefficient thresholding

C = Tλτ/2(C) = sgn(C)(|C| − λτ/2)+

(x)+ =
{

x, if x > 0
0, otherwise

(10)

with τ being the updating step size.
Original TL algorithm converges slowly, so

Vonesch and Unser [17] proposed to accelerate by
updating each subband separately for the Shannon wavelet.
To generalize the method to arbitrary wavelet basis, they [7]
propose to apply 1) and 2) iteratively in different subbands

1) Ct
j,m = Ct

j,m + τ j,mr j,m

2) Ct+1
j,m = Tλτ j,m/2(Ct

j,m) (11)

where r j,m is the projection of residual in subband ( j, m)

r j,m = W j,mHT (B − HL). (12)

Vonesch and Unser’s [7], [17] methods converge much faster
than the standard TL algorithm, since they use larger update
steps τ j,m in most subbands. Therefore, we also resort to
multilayer deblurring and flexible step sizes.
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Fig. 2. Nonuniform step sizes at the third level wavelet transform. (b) Nonuniform blur generated from a 6D camera motion and depth map in (a).
(c)–(f) Nonuniform step size maps in four subbands, ranging from one (blue) to six (red).

A. Nonuniform Step Size

Theoretically, the optimal update step τ j,m for a specific
kernel can be computed from its discrete Fourier coefficients.
Considering the self-containment of this paper, we give the
equation for computing the step size τ j,m of a given local blur
kernel K

τ j,m(K) = 1
∑

n∈S j
ρ j,m,n(K)

(13)

where S j is the set of all the subbands in level j , and both
m and n are the subband indices and

ρ j,m,n(K) = max
ω1,ω2

|conj(F(W j,m))F(W j,n)F(K)| (14)

in which F(·) is the Fourier transformation, conj(·) is the
conjugate operation, (ω1, ω2) indexes the element in Fourier
domain, and W j,m and W j,m are the wavelet transformations
from the spatial domain to the subbands ( j, m) and ( j, n),
respectively.

For nonuniform deblurring, both blur kernels and the opti-
mum τ j,m values are spatially varying, so a fixed step size
(minimum across the whole image lattice) largely offsets the
advantage of multilayer deconvolution framework. Therefore,
we propose to use a nonuniform step size map in each
subband.

Dense and exact computation of τ j,m values is difficult,
and is also empirically unnecessary. Therefore, we propose
to compute optimal step sizes at several sampled positions
and interpolate the rest pixels by bilateral propagation. In this
paper, we sample the positions to compute the local blur

kernels in a gridwise manner. A uniformly distributed M × M
point grid on the image is sampled, and here, M is empirically
set to be 5∼8, according to the spatial variance of the blurring
effect. The local blur kernels of these points are computed by
using the perspective geometry from the camera parameters,
the camera motion, and the scene depth, which are assumed to
be known for this nonblind scenario. The related computation
process for local blur kernels is a little bit complex but
not the technical contribution of this paper, so we add it in
the Appendix. As an example, a computed local blur kernel
map of the sampled reference points is shown in Fig. 2(b).
A bilateral filter extends the spatial Gaussian filter by intro-
ducing external guidance (usually intensity). In our scenario,
depth and spatial coordinates are two main factors determining
the nonuniformity of blur kernels. Therefore, the step size at a
certain pixel x can be interpolated from its neighboring pixels
with known step sizes according to depth continuity and spatial
proximity

τ j,m(x) =
∑

x′∈N(x) Gs(x) · Gd (x) · τ j,m(x′)
∑

x′∈N(x) Gs(x) · Gs(x)
(15)

in which

Gs(x) = e
− (D(x)−D(x′))2

2σ2
d and Gd(x) = e

− ||x−x′||2
2σ2

s (16)

where N(x) is x neighborhood positions of the sampled local
blur kernel set. We naturally use the step sizes of the four
kernels around x, i.e., the nearest kernels on its upper, under,
left, and right side, to interplate the step size in the pixel.
Gd(·) and Gs(·) are both Gaussian filters, σd and σs are,
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Algorithm 1 Multilayer Deblurring Framework
Input: Blurry image B and blur matrix H
Output: Latent sharp image L
//*Initialization*//
• Sample representative local kernels and corresponding
patches;
• Precompute the step size map of each subband;
• Initialize the latent sharp image L0 and residual
r0 = HT (B − HL0);
//*Updating*//
for t = 0 to T do

for j = 1 to jmax , ∀m do
//*Single layer update*//
• Compute wavelet projection of residual image
by rt

j,m = W j,mrt ;

• Update coefficients in each subband by
Ct

j,m = Ct
j,m + τ j,mrt

j,m ;
• Threshold coefficients in each subband by
Ct+1

j,m = Tλτ j,m/2(Ct
j,m);

• Reproject rt
j ’s modification �rt

j by (20);
• Correct the residue following rt+1 = rt + �rt

j .
end

end

respectively, the depth and spatial variance of the Gaussian
weight, and D(x) is the depth at x. Here, the value of σd

depends on the range of the scene depth. Practically, we set σd

to be 0.01DR (DR is the range of the depth map) in this paper.
The spatical variance σs determines the spatially propagating
scope of a single local kernel. In this paper, we set that 3σs ,
which is the nearly zero limit for the Gaussian distribution,
equals to the interval between two adjacent kernels. Fig. 2
shows the nonuniform step size maps of a 6D camera shake
blur computed by our bilateral propagation method and dis-
plays apparent depth dependence of optimum step sizes.

B. Coarse-to-Fine Deblurring

After determining the step size map in each subband,
we propose a wavelet-based coarse-to-fine deblurring strategy,
with the key steps listed in Algorithm 1.

1) Initialization: The latent sharp image is initialized by
filter flow-based method [27] with Gaussian prior [39] as

L0 =
∑

i∈P

wi
conj(F(Ki))F(B)

|F(Ki)|2 + λ(|F(∇h)|2 + |F(∇v )|2) (17)

where P denotes the set of patches at the selected positions for
computing the step size maps. The patch centers are coincide
with the selected points in the grid form, and the patch size
is set to ensure that the overlap between the adjacent patches
is larger than the maximal size of the sampled M × M local
blur kernels; F(·) is the Fourier transform function, and Ki is
the local blur kernel at patch i ; ∇h and ∇v are the gradient
filter in horizontal and vertical directions, respectively; λ is
the weight for gradient regularizer; wi is the weight of the
pixels in the i th patch for stitching the patches back to the

entire image

wi (x, y)|i∈P(x,y) ∝ e
− (x−xi )

2+(y−yi )
2

2σ2
w (18)

where P(x,y) is the set of all the patches containing the pixel
(x, y), (xi , yi ) is the center of the patch i , and σw is set to
be 1/6 of the patch size, so that according to the 3σ rule of
the Gaussian funciton, the weight of pixels in the border of
each patch is about zero. The weights of each pixel for all
the patches in P(x,y) have to be normalized to make sure the
summation

∑
i∈P(x,y)

wi (x, y) = 1. Then, after having L0, the

residual image can be derived by r0 = HT (B − HL0).
2) Single Layer Update: Since the subbands in the same

layer do not couple with each other, we update the coefficients
within a layer altogether. In particular, we calculate the values
of r wavelet decomposition {r j,m, j = 1 · · · jmax} and multiply
it with the precomputed step size map in the pixelwise manner,
and then, the wavelet coefficients C can be updated by (11).

After updating C, the residual term r = HT (B−HL) needs
to be corrected accordingly. Since only coefficients in a single
layer change, the incremental residual can be computed by

�r j = HT H
∑

m

WT
j,m�C j,m

=
∑

m

(UW j,m)T HT HU j�C j,m (19)

where �C j,m is the updating quantity of subband coefficients
C j,m computed from (11). It is reasonable to assume that
the residual image r is sparse and becomes sparser with the
estimation of sharp image L converging, so the update in each
iteration is also sparse. Therefore, to accelerate (19), we can
truncate the small values before conducting the two blurring
processes (i.e., multiplying H and HT ), and then, (19) becomes

�r j =
∑

m

(UW j,m)T HT Tthr2(HU jTthr1(�C j,m)) (20)

where thr1 and thr2 are the truncation thresholds.
As for the settings of these two truncation thresholds,

because rt = HT (B−HLt ) includes the imaging noise besides
the estimation error of Lt , we hope to perform noise sup-
pression to ensure a high-quality deconvolution result. Here,
we refer to the Visushrink thresholding truncation strategy in
Donoho and Johnstone’s [40] work. Different from Visushrink
denoising based on a universal threshold λvisu that is often
much higher than the optimum, we favor a more conserv-
ative estimation to preserve that the crucial details preserve
the signal components well. Therefore, we empirically set
thr1 = 0.1λvisu and thr2 = 0.01λvisu.

Fig. 3(a) compares the running time of the proposed
thresholded and nonthresholded correction in each iteration.
The difference clearly demonstrates the superior efficiency
of thresholded correction to its nonthresholded counterpart.
In addition, the residual maps at iterations 1, 5, and 10
are shown. It is clear that the sparsity of the residue map
largely increases with the iteration and the computation time
of each iteration also decreases correspondingly. In all, the
computation efficiency significantly benefits from the sparsity
property of the residual component. Note that the proposed
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Fig. 3. Analysis on algorithm efficiency and performance. (a) Running
time with and without thresholding, with the residual error maps in the
first, fifth, and tenth iteration displayed. (b) Plots of the running time
and the performance, with the results obtained by applying algorithms on
512 × 512 pixel images with slowly varying blur kernels.

method can either be terminated at a fixed iteration number T ,
or stop when the update between two iterations is smaller than
a constant. In this paper, we found that the algorithm always
achieves the best performance on about 30 iterations, so we
choose the former method and set T = 30.

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct a series of experiments to
verify the efficiency and effectiveness of our wavelet domain
nonuniform deblurring algorithm. The nonuniform deconvolu-
tion algorithm can be divided into two types: the pixelwise
algorithms and the patchwise ones. Due to their inherent
defect, all the pixelwise algorithms are extremely slow, since
they have to compute the PSFs pixel by pixel. Conversely,
the patchwise algorithms are much faster and of lower accu-
racy. For comparison, we choose the pixelwise nonuniform
TL (NUTL) that is of high accuracy and the fast nonuni-
form deconvolution algorithm, which is highly efficient by

combining EFF [27] and fast uniform deconvolution with
hyper-Laplacian prior [8] (EFF-FHL for short). The results of
EFF-FHL methods at different patch numbers are shown, with
the patch size determined by the image size and the overlap
between adjacent patches. Here, we set the overlap, which
is equal to the kernel size to eliminate blocking artifact.
To reduce the support region size of the wavelet basis, we use
the Symlet 8 wavelet in our implementation.

A. Discussion on Running Time and Accuracy

Benefiting the sparsity of wavelet coefficients and the
compactness of wavelet hierarchy, the proposed approach
raises computation efficiency significantly. Meanwhile, our
approach is of high accuracy due to the small support region
of wavelet basis. Here, we compare the running time of our
deblurring algorithm with those of two aforementioned state-
of-the-art algorithms—NUTL and EFF-FHL, and plot their
convergence curves in Fig. 3(b). We test the algorithm on
the Miscellaneous dataset of USC-SIPI Image Database [41].
In sum, 26 images with the same size (512 × 512) are
used, and the performance, i.e., the peak signal-to-noise
ratios (PSNRs) and the running time, is averaged over these
images. The program is implemented with MATLAB and
run on a workstation with Intel Core i5-3470 (3.2 GHz),
8-GB RAM.

From the comparison, we can clearly see that the run-
ning time is comparable with EFF-FHL while significantly
shorter than NUTL. Although being slightly slower than
EFF-FHL, our algorithm is much more accurate in the sce-
narios when the assumption of smoothly varying blur kernels
in EFF-FHL is violated. In such cases, EFF-FHL needs quite
small patches to approximate the real blur kernels and results
in higher final performance at the expense of increasing
running time, as plotted by the green curves. However, the
performance reaches the optimum at a certain patch number
(10 × 10 patches here), which is determined by the size
and local nonuniformity of blur kernels, because the abruptly
changing kernels cannot be approximated accurately. Differ-
ently, our approach only assumes uniformity within the support
region of wavelet and thus obtains higher performance (here
we used PSNR), as shown in Fig. 3(b).

It is worth noting that the efficiency of our algorithm
depends on the texture richness, so the running time
on extremely complex textures cannot be reduced largely.
Fortunately, for the general natural images, the rich textures
usually occupy a small proportion and the proposed algorithm
is efficient statistically.

Besides, the efficiency of the proposed algorithm does
not highly depend on the adopted wavelet types. Fig. 4
shows the convergence curves with different wavelets. Four
wavelets with different taps, i.e., Haar, Symlet 4, Symlet 8, and
Daubechies 9.7, are applied, and we can see that the running
time and the performance of these wavelets are at the same
level, except that the running time of Haar is slightly longer.
That is because our implementation for wavelet decomposition
and reconstruction is based on the FFT, so that the short-tap
wavelets, e.g., Haar, do not have the advantages in computa-
tional efficiency. Besides, since the coefficients of the other
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Fig. 4. Average PSNR (y-axis) and the running time (y-axis) with different
wavelets.

Fig. 5. Analysis on noise tolerance. (a) PSNR (y-axis) with different weights
of the wavelet regularization term (λ) at different noise levels (σn ). (b) PSNR
performance of the proposed algorithm by using empirically setting λ = √

2σn
on the images with different noise levels.

complex wavelets may be sparser, the proposed algorithm is
more efficient by using more complex wavelets, e.g., Symlet 4,
Symlet 8, and Daubechies 9.7.

We also test the algorithm on the synthetic data with differ-
ent noise levels. As shown in Fig. 5(a), the PNSR of the results
on different noise level σn images with different wavelet term
weights λ is given. We see that as the noise level increases,
the optimal weight increases as well. Empirically, the best

Fig. 6. PSNR (y-axis) and the running time (y-axis) with different blur sizes.
The LBK size refers to the maximum local blur kernel size.

weight of the wavelet regularization term λ is around
√

2σn .
The PSNR curve by using λ = √

2σn on the images with
different noise levels is shown in Fig. 5(b). The performance
reduces slightly with the noise level increases. However, even
for the very challenging case, i.e., σn = 15 (the intensity range
is 0 ∼ 255), the proposed algorithm still gives promising
result.

To analyze the effect of blur kernel size, we test the
algorithm on the images with different blur sizes. A series of
blurry images with a similar blur pattern but different blur
sizes is generated from a single motion trace multiplying
with different ratios. The PSNR versus runtime curves for
different blur sizes are shown in Fig. 6. We can see that
for the smaller blur, the algorithm converges faster, but even
for the very large blur (local blur kernel size is 40 pixels), the
algorithm converges at about 30 iterations. The computation
of each iteration is almost the same, so that our algorithm with
constant iteration number (T = 50 in this experiment) finished
at about the same time. As for the deblurring performance, the
PSNR of the results decreases with increasing blur size, and
this trend consists with the intuition.

B. Comparisons on Synthetic Data

1) Slowly Varying Blur: We compare the performances of
our algorithm, EFF-FHL and NUTL on a nonuniformly blurred
image caused by the 3D camera rotation, and the results are
shown in Fig. 7. Apparently, both our algorithm and the NUTL
algorithm achieve good performance across the whole image,
while there are some artifacts in the final results of EFF-FHL.

In terms of running time, our algorithm can be about
30 times faster than the NUTL method, but a little inferior to
EFF-FHL. The artifacts in the EFF-FHL are mainly caused by
inaccurate approximation of the true blur kernels. Fig. 7(e)–(g)
shows the results of EFF-FHL with different patch numbers,
from which we can see that as the patch number increases,
EFF-FHL obtains higher recovery quality while takes longer
running time. When the patch number increases to 10×10,
the computation time is not apparently advantageous over
our algorithm, while the PSNR of the result is still lower.
Furthermore, as mentioned earlier, further increasing patch
number will not raise the performance of EFF-FHL.
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Fig. 7. Restoration results of a blurry input image with slowly varying nonuniform blur kernels caused by a synthetic 3D camera rotation. Parameter settings,
performance, and running time are labeled under each subfigure. The original aerial image is provided by Zurich Hoengg data set. (a) Original sharp image.
(b) Blur kernels. (c) Blurred image. (d) Ours, PSNR = 23.66 dB and t = 198.5 s. (e) EFF-FHL, 5 × 5 patches, PSNR = 19.07 dB, and t = 112.5 s.
(f) EFF-FHL, 7 × 7 patches, PSNR = 20.63 dB, and t = 126.9 s. (g) EFF-FHL, 10 × 10 patches, PSNR = 22.37 dB, and t = 193.4 s. (h) NUTL,
PSNR = 22.9 dB and t = 5842 s.

Overall, the EFF-FHL method is more suitable for the
tasks with high-speed requirement, since it tends to give a
reasonable result in very short time. In performance demand-
ing cases, both our method and NUTL work well, while our
algorithm runs as fast as the EFF-FHL method, and it can be
applicable in most scenarios.

2) Intensely Varying Blur: We also test the performances
of three algorithms on depth-dependent nonuniformly blurred
images caused by a large 6D camera motion, and the results
are shown in Fig. 8. Comparing the subfigures, we can
see the same trend as in the last experiment: our algorithm
achieves comparable result with the NUTL algorithm but at a
significantly faster speed, and the EFF-FHL method does not
work as well as ours in this example.

There are lots of fringes in some regions of EFF-FHL’s
results at each patch size setting, and these artifacts lead
to significant quality deterioration, both visually and quan-
titatively (in PSNR). The causation of these local artifacts
can be attributed to the twofold criteria for the selection of
patch size: 1) the patch should be small enough to ensure
within-patch uniformity and thus approximate the true kernels,
especially in the regions with drastically changing blur patterns
and 2) the patch should be large enough to cover the blur
kernel size, or the blur model cannot describe the true blur
process correctly. Therefore, a uniform decomposition will
cause some fringes in some regions while perform better in
the others, where the patch size is large enough to cover the
local blur kernel and small enough to ensure local uniformity.
This also validates the advantages of the proposed wavelet

domain acceleration in such complex cases, due to a much
looser assumption on the local uniformity of blur kernels.

C. Comparisons on Real Captured
Database (Köhler et al. [42])

To verify the effectiveness of the proposed method on real
captured images, we apply our algorithm on the benchmark
data set captured by Köhler et al. [42]. They acquire 12 blurry
versions for each of the four sharp images by mounting the
camera on a delicate six DOF Stewart motion platform, which
playbacks different motion trajectories. In total, this database
consists 48 blurred images, with both the ground truth motion
trajectories and the sharp images provided. The PSFs can be
computed from the motion trajectories and some other camera
parameters, e.g., focal length and scene distance. Considering
that the kernel nonuniformity of some images in this data-
base is not large, we also test the performances of some
state-of-the-art uniform deblurring algorithms [2], [4] by
choosing the calculated PSF at the image center as the input
kernel.

Table I lists the quantitative (PSNR in dB) comparison
among the proposed algorithm and the other state-of-the-art
methods on Köhler et al.’s [42] database. It is obvious that
the proposed approach achieves the best performance, while
other methods, either uniform or patch-based nonuniform
deblurring, suffer from the nonuniformity of the real blur
kernels. Fig. 9 shows the visual comparison among different
algorithms on one example from Köhler et al.’s [42] database
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Fig. 8. Restoration results of an input synthetic blurry image degenerated by intensely varying nonuniform blur caused by a random 6D camera motion.
Parameter settings, performance, and running time are labeled under each subfigure. (a) Original sharp image. (b) Depth. (c) Blur kernels. (d) Blurred image.
(e) EFF-FHL, 5 × 6 patches, PSNR = 19.66 dB, and t = 17.3 s. (f) EFF-FHL, 8 × 9 patches, PSNR = 21.07 dB, and t = 46.3 s. (g) EFF-FHL,
15 × 18 patches, PSNR = 23.27 dB, and t = 129.4 s. (h) NUTL, PSNR = 25.75 dB, and t = 536.8 s. (i) Ours, PSNR = 25.23 dB and t = 47.4 s.

TABLE I

QUALITATIVE COMPARISON (PSNR IN DECIBELS) WITH STATE OF THE ARTS ON KÖHLER et al.’s BENCHMARK DATABASE [42]

and the running time is also provided. In terms of visual
quality, we can see that two learning-based uniform deblurring
algorithms can effectively suppress the ringing artifacts caused
by the lost high-frequency and inaccurate kernel estimation,
while there exists some slight ringing in the results of our

approach and the EFF-FHL method. However, the PSNRs of
these two uniform deblurring algorithms are slightly lower
than those of the EFF-FHL (7 × 7) algorithm and ours,
which apparently have some artifacts. The inconsistency from
the visual quality and quantitative evaluation mainly comes
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Fig. 9. Restoration results of an example from the benchmark database [42] for the deblurring algorithm evaluation. Parameter settings, performance, and
running time are labeled under each subfigure. (a) Observed blurry image. (b) Ground truth sharp image. (c) Blur kernels. (d) EFF-FHL, 4 × 4 patches,
PSNR = 29.59 dB, and t = 54.2 s. (e) EFF-FHL, 7 × 7 patches, PSNR = 30.99 dB, and t = 138.3 s. (f) Schuler et al.’s [2], PSNR = 29.92 dB, and
t = 104.5 s. (g) Zoran and Weiss’s [4], PSNR = 30.9728 dB, and t = 2749.6 s. (h) Ours, PSNR = 33.70 dB and t = 212.1 s.

from the fact that learning-based methods reconstruct the
latent sharp image using not only the information from input
image but also from an artifact-free natural image data-
base. Although with higher visual quality, the results from
learning-based approaches may introduce some distortions
or hallucination infidelity compared with the ground truth.
Comparing the two nonuniform deblurring approaches, our
algorithm obtains superior performance, both visually and
quantitatively. Although the patch-based method (EFF-FHL)
achieves promising performance using smaller patches and at
expenses of higher computation cost, our restoration results
are still of higher quality. The superior performance verifies
the effectiveness of our algorithm.

V. CONCLUSION

This paper proposes an efficient nonuniform nonblind
deblurring approach, in which the calculation and the regu-
larization are both performed in the wavelet domain. In term
of performance, our approach achieves performance superior
or comparable with the state-of-the-art nonuniform algorithms.
In terms of efficiency, we obtain speed significantly faster than
the pixelwise algorithms and comparable with the EFF-based
method, which is, to the best of our knowledge, the fastest
published algorithms.

After transforming the blur model and deblurring algorithm
to wavelet domain, the preprocess and postprocess steps—
wavelet decomposition and reconstruction—cost a large por-
tion of running time. In other words, wavelet transformation
has replaced the blurring process to become the bottleneck

of speed, so we will investigate these problems and raise the
efficiency further in the future work.

In order to realize real-time video deblurring, the current
algorithm is still not fast enough without the aid of hardware.
However, the proposed algorithm can work parallelly, and
thus, the GPU-based implementation is potentially to achieve
real-time processing. After the algorithm is mature enough,
designing the corresponding dedicated hardware chips is
another acceleration solution and on the list of our future work
as well.

Besides, the blind deblurring is a useful task and also can
benefit from the high computation efficiency of the wavelet
domain deconvolution, so blind deconvolution in the wavelet
domain is as well a worth studying problem. In the future,
we will try to extend the proposed algorithm to blind
case.

APPENDIX

CALCULATION OF LOCAL BLUR KERNELS

This paper focuses on the nonblind deblurring, which
assumes the camera intrinsic and motion, and the scene depth
is known. We denote the camera motion during exposure time
[ts, te] as M(t). At each instant, the camera pose is described
with at most six DoFs—{Tx , Ty, Tz, θx , θy, θz}, which repre-
sent the translation along and rotation around x-, y-, z-axes,
respectively. Mathematically, M(t) is an element in a 6D
continuous function space or its subspace

M(t) ∈ C[ts, te]Dim, 2 � Dim � 6 (21)
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where C is the continuous function space defined over
exposure time interval [ts, te]. To facilitate representa-
tion and derivation, translation is represented by a vector
T = [Tx , Ty, Tz]′, and the rotation in axis angles is transformed
to a matrix-by-matrix exponential R = e[θ]×

[θ ]× =
⎡

⎣
0 −θz θy

θz 0 −θx

−θy θx 0

⎤

⎦. (22)

Because of camera motion during exposure, a single scene
point projects to multiple pixels along a continuous trajectory,
which depends on both the 3D coordinate of the scene point
and camera motion during exposure. Fixing the focal length,
the projection at time t can be expressed by

x′(t) ∼ K(R(t)X + T(t)) (23)

where x′(t) is the point spread trajectory (we borrow the
concept of PSF) in image plane of scene point X, K is
the camera intrinsic matrix [43] that is assumed to be time
invariant during exposure, and R(t) and T(t), respectively,
denote the rotation matrix and the translation vector at time t .
By integrating x′(t) in the time domain, the local blur kernel
corresponding to point X can be derived.
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