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High-Dimensional Camera Shake Removal
With Given Depth Map

Tao Yue, Jinli Suo, and Qionghai Dai, Senior Member, IEEE

Abstract— Camera motion blur is drastically nonuniform for
large depth-range scenes, and the nonuniformity caused by
camera translation is depth dependent but not the case for
camera rotations. To restore the blurry images of large-depth-
range scenes deteriorated by arbitrary camera motion, we build
an image blur model considering 6-degrees of freedom (DoF) of
camera motion with a given scene depth map. To make this 6D
depth-aware model tractable, we propose a novel parametrization
strategy to reduce the number of variables and an effective
method to estimate high-dimensional camera motion as well. The
number of variables is reduced by temporal sampling motion
function, which describes the 6-DoF camera motion by sampling
the camera trajectory uniformly in time domain. To effectively
estimate the high-dimensional camera motion parameters, we
construct the probabilistic motion density function (PMDF) to
describe the probability distribution of camera poses during
exposure, and apply it as a unified constraint to guide the
convergence of the iterative deblurring algorithm. Specifically,
PMDF is computed through a back projection from 2D local
blur kernels to 6D camera motion parameter space and robust
voting. We conduct a series of experiments on both synthetic and
real captured data, and validate that our method achieves better
performance than existing uniform methods and nonuniform
methods on large-depth-range scenes.

Index Terms— Blind deconvolution, motion deblurring,
high-dimensional camera motion, depth dependent.

I. INTRODUCTION

CAMERA shaking is a major problem in image acquisi-
tion, especially long exposure capturing using hand-held

cameras, and lots of deblurring methods have been proposed.

A. Related Works

The works on camera shake removal fall into two main
streams according to the assumption on blur kernels: spatially
uniform and non-uniform. The former methods formulate
image blur as a 2D convolution process, and perform decon-
volution on a single blurred image [1]–[11], multiple images
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captured at different settings such as long-exposure/short-
exposure image pair [12] [13], or an image set deteriorated
by different blur kernels [14]–[18]. The uniform methods
assume that all the pixels are blurred with the same blur
kernel, but this assumption does not hold because the image
blur at a specific position is highly correlated with both
camera motion and corresponding scene depth, i.e., spatially
varying [19]. Therefore, more and more researchers focus their
attentions on non-uniform motion blur recently. As discussed
by Joshi et al. [20], the spatial variance of Point Spread
Functions (PSFs) are correlated with two types of camera
motion, rotation and translation, between which the spatial
variance caused by rotation is depth independent, while that
caused by translation heavily depends on scene depth.

For the rotation caused non-uniform blur, Shan et al. [21]
propose an in-plane rotation blur model. As an improvement,
a 3-DoF rotation blur model is proposed by Whyte et al. [22],
who take all the 3 rotation directions into consideration.
However, all these works only consider camera rotation
during exposure and thus cannot handle camera translation,
which is also a typical camera motion and causes significant
image blur. Since blur caused by camera translation is depth
dependent [20], Favaro et al. [23] and Sorel et al. [24]
and Xu et al. [25] explicitly compute scene depth by stereo
approach to address the image blur caused by camera transla-
tion. Taking both translation and rotation into consideration,
Joshi et al. [20] use inertial sensors to measure the 6-DoFs
camera motion, and perform image deblur subsequently. With
a similar model, Tai et al. [26] estimate 6-DoF camera
motion from labeled cues before applying deblur algorithm.
Without external input, Gupta et al. [27] use in-plane rotation
and x , y-translation to approximate the 6-DoF motion to
reduce computational cost and use a blind deblur algorithm to
restore the sharp image. Furthermore, Harmeling et al. [28]
and Hirsch et al. [29] gives an efficient-filter-flow based
deblurring framework which can deal with both rotation and
translation fast. Lee et al. [30] combine the image restora-
tion algorithm with Simultaneous Localization And Mapping
(SLAM) technique to solve their 6-DoF motion blur model
which assumes that the local blur kernels are straight lines.
In spite that being able to handle both camera rotation and
translation and give promising results, there are two major
limitations to above methods: firstly, they either depend on
external input (hardware or user interaction) for camera motion
estimation/acquisition or simplify the motion parameters to
avoid intensive computation; secondly, most of the above blur
models assume planar scenes.
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There are also some previous work using high-rate low-
resolution/low-rate high-resolution hybrid camera systems to
remove non-uniform image blur due to camera shake, such
as [31]–[33]. All these methods compute optical flow from
high-framerate image sequences to approximate the blur kernel
instead of computing camera motion explicitly. However, the
performance is prone to estimation error of optical flow
because of lacking a unified camera motion as constraints.

As described before, depth acquisition is of crucial impor-
tance for camera motion deblurring. Fortunately, depth acquisi-
tion has been a significant research topic over the past decades
and made great progress. Several methods like structure from
motion [34], structured illumination [35] and others which
we collectively called shape from X are proposed. Recently,
real-time depth camera is invented and has been used in
[36]–[38] successfully. Either based on time of flight [39]
or coded illumination [40], currently available depth cameras
perceive scene depth by active illumination and work well even
in low light environment. In sum, capturing scene structure
becomes easier with higher accuracy, and would provide nec-
essary information for solving depth-aware deblurring prob-
lems.

B. Our Approach and Paper Organization

To deal with the non-uniform blur caused by an arbitrary
camera motion, both scene structure and high-dimensional
motion need to be considered. In this paper, we use a depth-
aware projective blur model considering scene depth and
describes motion with 6 DoFs explicitly. Practically, scene
structure can be acquired by a depth camera or computed
by structure from X approaches, while computing high-
dimensional motion parameters will severely intensify the
computation cost, which is a common problem in non-uniform
deblurring. Actually, computing 6-DoF motion parameters
using traditional methods is intractable, so most of the existing
methods simplify the motion blur model to lower DoFs
to approximate the 6D camera motion. To the best of our
knowledge, state-of-the-art blind deblurring approaches can
only handle camera motion of no higher than 3 DoFs, which
limits the capacity of these algorithms for dealing with the
image of large-depth-range scenes deteriorated by 6D camera
motion.

To overcome this problem, Temporal Sampling Motion
Function (TSMF) and Probabilistic Motion Density Function
(PMDF) are proposed to reduce variable number and improve
the convergence respectively.

1) TSMF: Traditional blind deblurring methods use the
probability density function of motion parameter to describe
the camera motion by sampling uniformly in parameter space
and giving each sample a weight to describe the fraction of
time the camera spent on this discretized pose. As the para-
meter dimension increases, the needed sample size increases
drastically and induces high computational cost. In addition,
because camera trajectory is just a 1D curve in the 6D
parameter space, most of the samples in parameter space are
trivial (zero entries), which implies that this sampling method
is inefficient. Furthermore, since the sparsity constraint of

the motion has to be used to regularize the problem, this
will further intensify the computation cost. To address this
problem, TSMF is proposed to describe camera motion by
sampling camera poses in time-domain and each sample needs
at most 6 parameters to describe the camera pose at this
moment. Without sampling in the triviality area of parameter
space, TSMF is much more efficient and thus reduces the
variable number considerably.

2) PMDF: Deblurring approaches usually optimize camera
motion and latent sharp image iteratively, however, the conver-
gence of high-dimensional motion blur model is very difficult.
In this paper, PMDF is adopted to constrain the motion
parameters and thus improves convergence of optimization.
In computation aspect, we propose to compute PMDF by a
robust voting framework from low-dimensional blur kernels,
which can be estimated from local image patches. In practice,
we describe the PMDF in a probabilistic manner instead of an
exact optimum to raise the robustness to estimation error of
low-dimensional blur kernels.

This paper firstly describes the adopted imaging model and
parametrization (TSMF) in Sec. II, and then gives the two
steps of our algorithm in Sec. III and IV respectively:

1) Compute PMDF
a) Split image into patches and estimate their 2D local

blur kernels
b) Calculate the confidence of 2D local blur kernels
c) Project 2D local blur kernels back to 6D parameter

space and estimate PMDF by robust voting
2) PMDF guided camera shake removal

a) Add PMDF to objective function as a constraint
b) Iteratively optimize TSMF and sharp image

After the experiments for model analysis and validation in
Sec. V, this paper concludes with some discussions.

In summary, the proposed model is advantageous over the
previous methods in multiple aspects: (i) depth and 6-DoF
camera motion are both explored explicitly to address arbitrary
motion blur for large depth range scene; (ii) camera motion
is modeled completely with 6 DoFs, and TSMF is proposed
to reduce the scale of the problem effectively. (iii) PMDF is
proposed to impose a unified constraints to spatially varying
blur, and it can be computed effectively from low-dimensional
local kernel estimation under a robust voting scheme.

Note that this paper assumes a given depth map, which may
limit the application of our method to some extent. However,
in Sec. V, we show that the depth map can be derived easily
by depth sensor or multi-view stereo methods in many cases.

II. DEPTH-AWARE PROJECTIVE BLUR MODEL

In this section, we establish our depth-aware projective blur
model which describes 6-DoF camera motion during exposure
and scene depth explicitly.

In this paper, we denote the camera motion during exposure
time [ts, te] as M(t). At each instant, the camera pose is rep-
resented with at most 6 DoFs—{Tx , Ty, Tz, θx , θy, θz} which
represent translation along and rotation around x−, y−, z−
axes (see Fig. 1(a)) respectively. Our method allows users to
choose all the DoFs or some of them according to specific
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Fig. 1. Diagram of our projective blur model. (a) 6 DoFs of camera motion
considered in our model. (b) The illustration of TSMF.

cases flexibly. Mathematically, M(t) is an element in a 6D
continuous function space or its subspace:

M(t) ∈ C[ts , te]Dim , 2 � Dim � 6. (1)

Here C is the continuous function space defined over exposure
time interval [ts, te]. To facilitate representation and derivation,
translation is represented by a vector T = [Tx , Ty, Tz]′, and
rotation in axis-angles is transformed to a matrix by matrix
exponential R = e[θ]× , see [41] for details.

Because of camera shake during exposure, a single scene
point projects to multiple pixels along a continuous trajectory,
which depends on both the 3D coordinate of the scene point
and camera motion during exposure. Fixing the focal length,
the projection at time t can be expressed by

x′(t) ∼ K(R(t)X + T(t)), (2)

where x′(t) is the point spread trajectory (we borrow the
concept of PSF) in image plane of scene point X, K is
the camera intrinsic matrix [41] that is assumed to be time-
invariant during exposure, R(t) and T(t) respectively denote
the rotation matrix and translation vector at time t .

Setting the camera pose corresponding to latent image as
reference pose (R = I3×3, T = 0), X can be directly calculated
from its corresponding pixel on latent image x = (u, v, 1)′
(represented by homogenous coordinate) and the depth of that
pixel D(u, v) (denoted by D for short):

X = DK−1x. (3)

Substituting Eq. 3 into Eq. 2, we can define a mapping
between a pixel x on the latent image and its corresponding
pixel on imaging plane x′(t) at time t . The mapping depends
on both the camera motion M and scene depth D simultane-
ously. Here, we denote this mapping as:

gM(t),D : R
2 → R

2

x �→ x′. (4)

As is known, the observed image I can be represented by
an integration within the exposure time range, then we have:

I (u′, v ′) = 1

te − ts

∫ te

ts
L(u(t), v(t))dt + n(u′, v ′), (5)

where the observed image I is assumed to be contaminated by
the i.i.d. noise n(u′, v ′), 1

te−ts
is a normalizing factor to ensure

that observed image I and latent image L are at the same

intensity level. The trajectory {u(t), v(t)} is the integration
path, which can be derived by the inversion of transformation
gM(t),D, then Eq. 5 becomes:

I (u′, v ′) = 1

te − ts

∫ te

ts
L(g−1

M(t),D(u′, v ′))dt + n(u′, v ′). (6)

Eq. 6 is our depth-aware blur model describing both 6-DoF
camera motion M(t) and scene structure D explicitly.

For computing convenience, the above blur model needs to
be parameterized. Traditional methods suppose each DoF has
Np samples, then N6

p (usually 106 ∼ 108) variables are needed
to describe the camera motion. In this paper, Time-Sampling
Motion Function (TSMF) (denoted by Mt t = 1, 2, . . . , Nt )
divides exposure time into small time slices, during which
the camera pose can be assumed to be constant and samples
a series of camera poses to describe the camera motion, as
shown in Fig. 1(b). Therefore, we can use at most 6 parameters
to describe a sample point, i.e. 6Nt (usually 103 ∼ 104)
variables are need in case of Nt samples, so the parameter
number is reduced dramatically compared to traditional para-
meterization. In our experiments, approximately hundreds of
samples are sufficient. In addition, the sampling process is
performed along time axes, so the sparsity constraint is implied
in the representation and does not need to be introduced into
the optimizational objective function explicitly.

III. HIGH-DIMENSIONAL PMDF

Camera motion estimation in blind deblurring is a non-
convex problem, and it becomes more difficult to solve
when the dimension of parameter space grows. This paper
propose to estimate the high-dimensional (> 2) motion by
projecting low-dimensional projections (2D kernel) back to
high-dimensional motion parameter space. Considering the
estimation error of 2D kernel, we compute a Probabilistic
Motion Density Function (PMDF) which represents the
probability distribution of camera motion in high-dimensional
parameter space. Then PMDF is utilized as guidance in the
following optimization step. We will explain the two key
steps of PMDF calculation, which are illustrated in Fig. 2.
To facilitate representation, in the diagram, we use 3D motion
blur model with translations on x, y axes and rotations around
z axes. The 3D PMDFs are represented by 3D cubes with
different density in different colors, and each cube in the 3D
space corresponds to a tuple of motion parameters.

A. Patch-Based Local 2D Kernels Estimation & Confidences

In this step, we uniformly crop overlapping image patches
with constant patch size from the input blurred image to
estimate local blur kernels. The patch size can be determined
according to the camera intrinsics and maximum motion range
by considering the rotation caused non-uniformity. The overlap
size is set to be slightly larger than the maximum 2D kernel
size. Then, in this paper the fast deblurring algorithm [42]
is applied to the patches to estimate the local blur kernels.
Specifically, from coarse to fine scales, the bilateral and
shock filters are used to predict the latent image, followed
by the kernel estimation and deconvolution (See [42] for
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Fig. 2. The diagram of our PMDF computation. (a) Input image and several selected image patches. (b) Estimated local blur kernels and sharp image by
uniform blind deblurring methods. (c) Estimating the PMDF from local kernels by back projection and robust voting. The 3D PMDFs are represented by 3D
cubes in (b)(c) with different densities by different colors.

details). Note that, any uniform deblurring algorithms can be
used to replace the adopted algorithm. Finally, each patch
is given a confidence according to its intensity and depth
by considering the translation caused non-uniformity. After-
wards, this confidence is used to form a robust estimator of
high-dimensional PMDF.

1) Size of Patches: Generally, conventional deblurring
methods work better in bigger patches. However, considering
the non-uniformity of blur kernels within a single patch, we
should limit the patch size to ensure that the uniform assump-
tion can approximate the real case well. Because translation
caused non-uniformity mainly depends on scene structure
rather than patch size, we only discuss rotation caused non-
uniformity here. According to the camera intrinsics and range
of rotation parameters, we can determine the maximum patch
size under a certain tolerance of non-uniformity within a patch.

First, we define the non-uniformity metric between two
point spread trajectories x′(t) and y′(t) at coordinate x and
y respectively, then the metric can be defined by:

metric(K (x), K (y)) = max
t

||dx′(t) − dy′(t)||2, (7)

where dx′(t) = x′(t) − x and dy′(t) = y′(t) − y. For a
patch centered at x and of radius �x, let the tolerance of
non-uniformity being ε, we have

max
�

||(g(x + �x)|�−(x−�x))−(g(x)|� − �x)||2 < ε. (8)

Assuming � being limited in a bounding box with vertex
set V�, the left side of Eq. 8 is maximized at one of the
vertices. Performing Taylor expansion at x yields

max
�

||g′(x)|�∈V�
�x − �x||2 < ε, (9)

then the maximum patch size satisfies:

||�x||2 <
ε

||g′(x)|θ∈Vθ
− 1||2 . (10)

Note that the patch size derived by Eq. 10 changes with posi-
tion x, so we uniformly sample several points in the image and
choose the minimum patch size computed as the constant size
for patch cropping. In Eq. 10, there is no unknowns except for
non-uniformity tolerance ε, camera settings and motion range,
which can be computed by camera intrinsics and maximum

2D kernel size. Tolerance ε is set to be 2 empirically, so we
need only get the camera intrinsics and estimate the maximum
size of 2D local blur kernels to set the patch size. In addition,
since we only considered the rotation caused non-uniformity,
for the scene with intensive depth variation, the patch size
should be tuned for better performance.

2) Confidence of Patches: There are two main factors
affecting the accuracy of estimated local blur kernels: richness
of texture and uniformity of blur kernels within the patch.
In the following, we will discuss the confidence calculation of
estimated local blur kernels according to these two factors.

a) Richness of texture: It is reasonable that blur kernel
estimated from a local image patch with abundant texture
should be more creditable than that from textureless patch.
Therefore, the traditional texture measurements like image
entropy or Harris corner metric can be used in our scenario.
Here we adopt image entropy defined as:

CH (patch) = −
∑
i, j

fi j log fi j , (11)

where fi j is the frequency of pixels in the patch with intensity
being i and the mean value of its neighborhood being j .

b) Uniformity of blur kernels: Although the rotation
caused non-uniformity of local blur kernels can be constrained
by reducing patch size, the spatial non-uniformity caused by
translation should also be taken into consideration. Geometri-
cally, the translation blur is depth dependent, so we favor the
blur kernel estimated from a patch with consistent depth. Here
we use reciprocal of standard deviation of depth in the patch
as metric of depth consistency:

Cd(patch) = 1/

√ ∑
(u,v)∈patch

(D(u, v) − D(u, v))2, (12)

where D(u, v) is the corresponding depth at pixel (u, v) and
D(u, v) is the mean depth in patch.

Considering above two criteria, we define our confidence of
the estimation accuracy as:

C(patch) = Cd (patch)CH (patch). (13)

To reduce computational cost, the blocks with low confi-
dence weights are removed by setting the truncation threshold
adaptively to preserve at least 95% of the total confidences.
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B. PMDF Estimation

Theoretically, PMDF should be a continuous function, while
in our paper we presented it by a set of uniformly distrib-
uted samples in the limited motion parameter space. For an
arbitrary motion vector M, the pM(M) can be calculated
by interpolation from discrete samples. Firstly, we perform
parameterization to form the sample set in high-dimensional
motion parameter space, and then vote the mappings of local
blur kernels in high-dimensional motion parameter space to
compute PMDF.

1) Parameterization: Suppose N is the limit of 2D kernel
size, which can be set according to the blur level of image,
the projection of high-dimensional camera motion in 2D
kernel space should be no larger than N . Approximately,
we could set the parameter range according to the following
inequalities:

⎧⎨
⎩

| f T{x,y}
Dmin

| < N
2 , | Tz

Dmin

√
u2

0 + v2
0 | <

√
2N
2 ,

| f θx,y| < N
2 , |

√
u2

0 + v2
0θz | <

√
2N
2 ,

(14)

where Dmin is the minimum scene depth, f is focal length,
and {u0, v0} is the principal point coordinate of camera and in
this paper which is set at the image center. Note that, f, u0, v0
are all in terms of pixel, while Dmin , Tx,y,z, θx,y,z are all in
terms of real units dimension.

To ensure estimation accuracy of PMDF, the 2D projection
in imaging plane of each discrete level should be no larger than
one pixel to eliminate ambiguity, consequently the number of
discretization levels along each axis should be more than N .
When the camera motion during exposure is slight, uniformly
discretizing each parameter will lead to a near uniform sam-
pling in 2D blur kernel space, i.e. the interval in 2D blur
kernel domain between projection of two adjacent samples is
approximately one pixel as well. To be on the safe side, we
set 1.2N discretization levels along each dimension in this
paper.

2) Back-Projection: As defined in Eq. 2, the 2D local blur
kernels can be regarded as the 2D projection of 6D camera
motion. Inversely, for a certain 2D local blur kernel, there
are a set of samples meeting the projection. The so-called
back-projection step is trying to calculate this set and their
corresponding weights for a certain local blur kernel.

Given the patch center x and depth D(x), the 2D projection
point x′(Mi ) of sample Mi can be calculated by Eq. 2. For
back-projection, we traverse the 6D motion parameter space,
and set each sample the same weight as its 2D projection x′
in 2D local blur kernel K :

K(Mi ) = K (x′(Mi )), (15)

where i is the index of samples and traverses all the
N6 samples in the limited high-dimensional motion para-
meter space and K is the 6D mapping of 2D local blur
kernel.

3) Robust Voting: In this step, the PMDF is computed by a
weighted voting process. For each sample in high-dimensional
parameter space, its probability density can be estimated by

direct voting from J patches:

QK1,K2,...,K J (Mi ) ∝
J∑

j=1

K j (Mi ), (16)

where j is the index of image patches.
Ideally, QK1,K2,...,K J (Mi ) can be directly used as PMDF.

However, considering the contamination from bad hypotheses
(i.e. outliers of 2D local blur kernels estimated by uniform
method), we propose a robust voting method to compute
PMDF. As is well known, median filter is widely used in
robust estimation for its desirable ability in suppressing the
effects from bad hypotheses, but it cannot deal with the white
noise with short-tailed distribution. In contrast, the Gaussian
filter achieves promising performance for short-tailed noise,
but suffers from the outliers. Therefore, we adopt order-
based bilateral weighted voting which combines median filter
and Gaussain filter to achieve good performance under both
bad hypotheses and short-tailed noise of good hypotheses.

Q(Mi ) ∝
∑J

j=1 w j (Mi )C(patch j )K j (Mi )∑J
j=1 w j (Mi )C(patch j )

w j (Mi ) = ex p{−||K j(Mi ) − Med j (K j (Mi ))||
2σ 2

r
}. (17)

Here, Med(·) is median operator, σr is the standard deviation
of Gaussian distribution. The value of σr depends on the noise
distribution of the estimated local blur kernels and we set it
to be 0.05 empirically in our experiments.

Fig. 3 shows all the intermediate results of PMDF compu-
tation on a synthetic example, which is generated by apply-
ing a random camera motion blur on the images of Venus
dataset [43] with known ground truth depth map. In this
experiment, we set camera focal length f =500 pixels, the
maximum 2D kernel size N = 12 pixels, the patch size is
100×100 pixels, the overlap size between adjacent patches
is 15 pixels. The 2D projection of ground truth blur kernels
and the estimated local blur kernels are respectively shown in
Fig. 3(d) and (e). The confidence map is shown in Fig. 3(f)
by brightness, from which one can see that the blur kernels
in Fig. 3(d) and (e) are mostly consistent in regions with
high confidence, i.e., our confidence approximately reflects the
accuracy of estimated local blur kernels. Fig. 3(g)(h) give the
estimated kernels by direct voting and confidence weighted
robust voting respectively. For visualization, the resulted 6D
PMDFs are projected to 2D blur kernel domain here. Fig. 3(i)
gives close-up views of Fig. 3(d)(e)(g)(h) respectively. We can
see that our confidence weighted robust voting framework
can achieve good performance even when estimated local blur
kernels are badly contaminated by outliers (as shown in the
top-right region of Fig. 3(e)). The estimated PMDF fits the
spatial-varying blur well over the whole image area, and thus
can help the motion parameters converge to the right solution.

IV. PMDF-GUIDED NON-UNIFORM DEBLURRING

Utilizing the PMDF to guide our non-uniform deblurring,
we can infer the latent image by Maximum A Posteriori
(MAP).
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Fig. 3. Removing synthetic motion blur. (a) The latent sharp image. (b) The depth map. (c) The blurred image. (d) The ground truth local blur kernels.
(e) The estimated local blur kernels. (f) The weighted confidence map which will be used in the back-projection step. (g),(h) The reprojections of PMDF
back to 2D blur kernel space. (g) shows the directly voting result by Eq. 16, (h) is the robust voting result by Eq. 17. (i) gives details of (d)(e)(g)(h)
respectively.

A. Objective Function

Following the Bayesian theorem, the joint conditional
probability p(L, M|I) can be decomposed as:

p(L, M|I) ∝ p(I|L, M)p(L)p(M). (18)

Here, p(I|L, M) denotes the likelihood, and p(L), p(M) are
the prior of latent image and camera motion respectively.
In this paper, we use the PMDF Q(M) to replace the
motion prior p(M). The above function can be optimized by
minimizing the following energy function:

E = ||I − Î||2 + λL ||∇L||0.8 − λM

Nt∑
t=0

log Q(Mt ), (19)

where Î is the blurred image predicted from latent image L and
camera motion M according to Eq. 6. The 2nd item is used to
constrain the sparseness of the gradient of L. The last item
denotes the constraint of high-dimensional camera motion,
which represents the consistency between current parameters
and precomputed PMDF. λL and λM are weighty factors.
In our experiments, λL is assigned with the same value in [44],
and λM is initialized to be 0.03 and with a 50% decreasing
rate in the following iteration.

B. Optimization

We minimize Eq. 19 by optimizing latent image L and
camera motion M alternately. First, we initialize the camera
motion M by sampling from distribution of camera motion
(i.e., PMDF), and initialize latent image L as weighted stitch-
ing of deblurred patches estimated by [4]. The optimization is
conducted by following two steps.

1) Fixing L and Optimizing TSMF Mt : Assuming the latent
image L be known, Eq. 19 can be simplified by eliminating
terms which depend only on L:

E = ||I − Î||2 − λM

Nt∑
t=0

log Q(Mt ). (20)

For a pixel in the textureless regions, the predicted value
Î (u, v) will not deviate from the observed value I (u, v) too
much even the camera motion estimation is not accurate.
Therefore, these terms can be discarded in optimizing camera
motion step. Then, Eq. 20 becomes:

E =
∑
u,v

�(∇I, u, v,
N

2
, σ )(I (u, v) − Î (u, v))2

−λM

Nt∑
t=0

log Q(Mt ), (21)

where �(·) is the indicate function defined by:

�(∇I, u, v,
N

2
, σ )

=

⎧⎪⎪⎨
⎪⎪⎩

1
if ∃(m, n) ||∇ I (m, n)||2 > σ,

∀(m, n) ∈ {(m, n)|(m−u)2+(n−v)2 <(
N

2
)2}

0 otherwise

(22)

Here N is size limit of 2D blur kernel, σ is the threshold
for choosing pixels with significant gradient. White area in
Fig. 4(a) shows the selected regions.

All of the variables in Eq. 21 are continuous, and can
be optimized by the traditional gradient based optimization
methods. In this paper, Levenberg-Marquard algorithm is used
to minimize Eq. 21. Adding smooth constraint to camera
trajectory Mt is beneficial for its computation, but tends to
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Fig. 4. Result of our PMDF guided deblurring method. (a) Mask for covering
textureless region. (b) The groundtruth local blur kernels. (c) Final deblurring
result. (d) The local blur kernels. (e) The result by Whyte et al. [22]. (f) The
local blur kernels computed by Whyte et al. [22].

complex the optimization and may hamper the convergence.
Therefore, we directly smooth it using Gaussian filter after
each iteration instead of adding an additional regularizer into
the objective function.

In the first iteration, the latent image I can be initialized
by stitching deblurred patches. To suppress the bad deblurred
results, the confidence map (shown in Fig. 3(f)) is used to
weight each pixel in Eq. 20, then the optimizing function
becomes:

E =
∑
u,v

�(∇I, u, v,
N

2
, σ )wc(u, v)(I (u, v) − Î (L0, u, v))2

+ λM

Nt∑
t=0

log Q(Mt ), (23)

where ∀i ∈ {i |(u, v) ∈ patchi ,

wc(u, v) = C(patchi )

L0(u, v) =
∑

C(patchi)patchi (u, v)∑
C(patchi )

(24)

Here, C(patchi ) is the confidence value. Since overlaps exist
between adjacent patches, the mean value (·) is introduced.

Similarly the pixel intensity L0(u, v) is computed by weighted
averaging for initialization.

2) Fixing TSMF Mt and Optimizing L: Eliminating all the
terms depending on M, Eq. 19 can be simplified as:

E = ||I − Î||2 + λL ||∇L||0.8. (25)

This is a typical non-blind spatially varying deblurring prob-
lem, which can be solved by using iterative re-weighted least-
squares methods [45], [46], which replace all the convolution
operations in uniform algorithms with our pixel-wise blurring
process defined in Eq. 6.

Fig. 4 gives the deblurring result by using our PMDF guided
method. It is obvious that the result derived by our method
could achieve large improvement over Whyte et al.’s which
considers only 3 rotation DoFs.

V. ANALYSIS AND EXPERIMENTS

In this section, experiments are conducted to analyze the
model parameters and validate the proposed algorithm.

A. Manifold Analysis

To illustrate the effectiveness of our framework and
show the principle of PMDF intuitively, we analyze the
characteristics of mapping from 2D blur kernel space to
high-dimensional parameter space.

For easier visualization, we constrict the degrees of camera
motion to be 3. To make the experiments more representative,
we choose the translation along x−, y− axes (Tx , Ty) and
rotation around z− axes Rz , which are typical camera motion
and widely used in previous works [27] and [21].

1) Impulse Kernel: As is well known, a blurred image can
be regarded as the integration of a series of images warped
from the latent image. Each warped image corresponds to a
camera pose which is located on the trajectory of the camera
motion. For each pixel x in the latent image, the location of
its corresponding pixel x′ in warped image can be computed
by Eq. 2 and 3 with the depth D(x).

Considering the 2D blur kernel domain, since 2D kernels
are projections of camera motion, it can be regarded as a
summation of a series of impulse kernels which correspond
to the camera poses along the camera motion trajectory. The
center of the impulse kernel locates at the pixel x and the peak
value of the kernel has an offset dx, which is used to transform
the pixel x on latent image to its corresponding pixel x′ on
warped image, and we denote the offset as dx = x′ − x.

In the case of 2D impulse kernel, the peak point corresponds
to a N − 2 dimensional manifold in N dimensional parameter
space. Specific to the 3D parameter space case, this manifold
is 1D and can be embedded into 3D Euclidean space. We
will show the mapping manifolds of these impulse kernels
and analyze the effects of three variables x, D(x) and dx on
these manifolds respectively.

a) Kernel center x: Kernel center x describes the location
of the 2D local blur kernel and is also the center of correspond-
ing pixel in latent image. Here we fix dx to be (0, 0) and
D(x) to be 5m, and change x in both horizontal and vertical
directions. The mapping manifolds in 3D parameter space
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Fig. 5. 1D mapping manifolds at different image locations. The horizontal coordinates u (pixels) of columns and vertical coordinates v (pixels) of rows are
labeled at the left and bottom of the figure.

Fig. 6. 1D mapping manifolds at different depths. The depth D is labeled at the bottom of each subfigure.

are shown in Fig. 5, which reveals that these 1D manifolds
are almost straight lines when motion parameters vary with
a small range around origin, while the slopes of these lines
change as the kernel center x changes. However, all these
manifolds intersect at the origin point which is the exact
3D motion parameters of camera pose coincide with these
impulse kernels. In fact, for all the local impulse kernels
corresponding to the same camera pose with different center x,
the corresponding 1D manifolds cross through the point which
exactly represents the camera pose, and have different slopes.

b) Depth D(x): Fig. 6 depicts the mapping manifolds
with different depths, with the kernel center x and offset dx
being set constant. According to the figure, the slopes of these
1D manifolds change with scene depth. However, unlike x,
their thicknesses also vary with depth. This is in accordance
with the projective geometry, i.e. the farther the scene point
is, the more translation is needed to cause the same offset
in 2D blur kernel space, an extreme case is when the depth
is infinite translation will never cause any movement of the
projection. Therefore, a pixel with the same size in blur kernel
domain corresponds to a thicker manifold in parameter space
as the depth increases. As the scene point moved nearer, the
projection range of the manifold on translation axes expands
while that on rotation axes shrinks. We can conclude that large
depth helps to determine rotation, and small depth helps to
determine translation, and the scene with large depth range is
in favor for high-dimensional camera motion estimation.

Fig. 7. 1D mapping manifolds with different offsets. The horizontal and
vertical offset du (pixels), dv (pixels) of columns and rows are labeled at the
left and bottom of the figure.

c) Offset dx: Offset dx describes the shift of peak point
of impulse kernel. As we can see in Fig. 7, for a certain scene
point (i.e. the x and D(x) are constant) the varying of dx
corresponds to translation of the 1D mapping manifold on
Tx , Ty directions in 3D parameter space.

2) Continuous Kernel: One important property of motion
blur kernel is the continuity, so that the kernel can be regarded
as a trajectory of a moving speckle, with the velocity reflected
by the intensity of pixels along the trajectory. As discussed
above, the varying of offset dx corresponds to translation of
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Fig. 8. 2D mapping manifold of a curve-like kernel. The corresponding 2D
blur kernel is shown at the top right of the figure.

mapping manifold along Tx , Ty directions in 3D parameter
space, so the 1D manifold spans to be a 2D surface in 3D
parameter space, as shown in Fig. 8. The points with the same
color in the surface have the same probability motion density.
We set x to be (0, 0) and D(x) to be 5m and give the surface
manifold of the continuous kernel in 3D motion parameter
space. The unknown camera motion trajectory is a curve
along the surface from one side to the other (both sides are
marked with small filled circles in Fig. 8). Furthermore, local
blur kernels estimated from different kernel center and scene
depths lead to different mapping surfaces, their intersection
determines the 3D camera motion trajectory.

3) Parameter Space With Dimension Higher Than 3:
Although the above discussions are all based on the 3D
parameter space, the conclusions can be extended to higher-
dimensional space: (i) 2D blur kernels estimated from each
patch are projected from the common camera motion, so the
intersection of their projection in high-dimensional space fits
the camera motion trajectory; (ii) big scene depth (i.e. farther
scene) helps to determine camera rotation parameters, while
small scene depth (i.e. nearer scene) helps to determine
translation. Thus, large depth range scene helps to determine
the unknown camera motion, and small depth range may lead
to model degeneration, i.e. the problem has multi-solutions.
(iii) incremental shift between latent image and blurred image
reflects the movement of mapping manifold along translation
directions (x−, y− axes).

B. Analysis of Depth-Dependent Blur

Here, we analyze some characteristics of depth-dependent
blur caused by camera translation.

1) Sensitivity to Sudden Depth Change: Both translation
and rotation may cause non-uniform blur, however, the rotation
blur varies gradually over the image, so it is possible to find
a single PSF with sufficient accuracy for a small local region,
and obtain promising deblurring results by deconvolution.

In contrast, the translation blur changes significantly at the
step edges that reflect discontinuous scene depth, and ignoring
the abrupt change of PSFs at these positions would deteriorate
the deblurring performance by introducing or aggravating
ringing artifacts. Therefore, compared with the rotation, the
blur caused by translation is more challenging in image
deblurring.

Fig. 9. Deblurring of 1D step signal with blur kernels with abrupt size
changes. (a) shows the original 1D signal. (b) shows the blurring result of
signal in (a) by two different sized kernels shown under the curve. Before
the step, it is blurred by the smaller kernel (7 units), while after the step,
the larger kernel (9 units) is used. In addition, the synthetic blur signal is
contaminated by Gaussian noise with σ = 0.01. (c) The signal retrieved by
non-uniform RL deblurring method. (d—f) The signal retrieved by uniform
RL method with 7, 8, 9 units blur kernels respectively.

Here we show an example of 1D step signal (see Fig. 9(a))
blurred by kernels suddenly scaling at the step point, as shown
in Fig. 9(b). This is quite similar to the situation of translation
cause blur. Fig. 9(c-f) shows the result of non-uniform and
uniform Richardson-Lucy (RL) [6] methods respectively. From
the results by RL methods in Fig. 9(d—f), one can see that
inaccurate approximation of blur kernel will result in strong
ringing artifacts near the stair.

2) Over-Deblurring & Under-Deblurring: Although trans-
lation blur varies with scene depth, the general shape of the
PSFs is preserved [24]. Therefore, inaccurate estimation of
PSFs due to translation may result in two possible undesired
outcomes: over-deblurring and under-deblurring, i.e., deblur-
ring using a kernel larger and smaller than the actual size.

Fig. 10 shows an example on synthetic data. We translate
camera along x− axis with constant velocity to blur the sharp
image in Fig. 10(a) and generate (b). Fig. 10(c) and (d)
are the ground-truth depth map and PSFs respectively. The
PSFs show that translation blur is drastically non-uniform with
depth varying. Fig. 10(e) gives the result of non-uniform RL
which achieves good performance in both far and near regions.
From the uniform deblurring results in (f—h) with increasing
kernel sizes, we can conclude that the smaller blur kernel
leads to incomplete deblurring, while the larger one introduces
apparent ringing artifacts. Therefore, depth-dependent blur
kernel must be considered to remove the non-uniform blur
while suppress the ringing artifacts along depth edges.

C. Degeneration Cases

Although, varying depth may causes significant non-
uniform blur, it can be ignored in some special cases. In such
cases, the non-uniformity of image blur is almost independent
of the scene depth. We can reduce the DoFs of blur model
in specific conditions to reduce the computation cost. Our
method provides a flexible framework for setting the DoFs of
camera motion, i.e. user can use a subspace of the entire 6D
parameter space as the support field of PMDF. This section
gives experiment results in some typical degeneration cases.
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Fig. 10. Synthetic blur caused by translation. (a) A sharp image of a
large depth-range scene. (b) The synthesized blurred image caused by camera
translation along x− axis. (c) The ground truth depth of the scene. (d) The
spatially varying PSFs. (e) The restored image derived by non-uniform RL
deblurring method. (f—h) The restored image by uniform RL deblurring
method with blur kernel length being 2, 5, 8 pixels respectively.

1) Narrow Depth Range Scene: If the scene has a narrow
depth range, the projective blur model degenerates from per-
spective transform to homography transform, then scene depth
can be ignored since it would not cause spatially varying
blur. In this case, 4D subspace with 3 translations and
the in-plane rotation could fit all the local blur kernels
very well.

Fig. 11 shows the degeneration in case of a planar scene.
In this simulated experiment, we set all the scene points
with a constant depth and generate a 6D camera motion

Fig. 11. Model degeneration in case of planar scene. (a) Synthetic 6-DoF
camera motion, the unit of rotation is angle degree and that of translation is
times of focal length. (b) Groundtruth local blur kernels. (c) 2D projection of
PMDF with 4 DoFs. (d) 2D projection of PMDF with 6 DoFs.

Fig. 12. Deblurring results of a planar scene. Parameter settings: focal length
f is assumed to be 1000 pixels, scene locates at a constant depth d=50× f ,
maximum 2D blur kernel size N=15 pixels, patch size is 150×150 pixels and
overlap size is 20. (a) Observed blurred image. (b)(c) The spatially invariant
and varying deblurred result shown in Gupta et al. [27]’s uniform deblurring
method. (d) The result of our method.

randomly (shown in Fig. 11(a)). The local blur kernels are
shown in Fig. 11(b). The 6D and 4D (3 translation and
in-plane rotation) parameter space were used to estimate
PMDFs separately. To show the performance of the estimated
PMDFs, we project the PMDFs back to 2D kernel space for
comparison. From the 2D projection results in Fig. 11(c)(d),
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Fig. 13. Deblurring result on scenes lacking of credible local blur kernels. Camera focal length f =440 pixels, 2D kernel size N is set to be 20 pixels, patch
size is 120×120 pixels and overlap size is 25 pixels. (a) Blurred image. (b) Depth map captured by depth camera. (c) Confidence map. (d) Estimated local
blur kernels. (e) 2D projection of PMDF with 3-DoF. (f) 2D projection of PMDF with 6-DoF. (g) Deblurred image. (h) Local blur kernels computed by our
method.

it is obvious that both 6D and 4D parameter spaces fit all
the blur kernels well. However, the PMDF estimator with 4D
subspace is significantly faster than that with whole 6D
parameter space.

We perform the deblurring under 4D DoFs assumption and
compare the deblurring result with that of spatially invariant
and varying algorithm in Gupta et al. [27], as shown in
Fig. 12(b) and (c). The results reveal that, the uniform model
fails to recover sufficient details, while both Gupta et al.’s
model and ours can describe the non-uniform blur in planar
scene and give promising deblurring results.

Comparing two non-uniform methods, our recovery is
slightly inferior to that of [27], In fact, this slight inferioty
is reasonable and a similar phenomenons is also observed by
Köhler et al.in [47]. In their benchmarking, Cho and Lee’s
uniform deblurring method [42] achieves better results than
Hirsch et al.’s [29] for some small spatial variance blurring
cases. These two methods adopt a similar framework, while the
latter one uses some strategies (e.g. EFF) for 3D non-uniform
cases. However, according to the Occam’s Razor theory, a
complex model may work worse than the simpler ones for
the degeneration cases.

2) Lacking Credible Local Blur Kernels: Although most
blurred image can provide enough information to estimate
local blur kernels, but not all of them are credible enough
to constrain the PMDF. For instance, if a scene includes a
large textureless region, the local blur kernels estimated from
which are awful and all the credible blur kernels concentrate
on a local area with a nearly constant depth map. In this case,
there is no sufficient credible local blur kernels to determine
the exact camera motion, so we can just reduce the dimension
of parameter space and ignore the scene depth.

Fig. 13 shows an example of this case. Since the
blurred image has large textureless background and only the
kernels located in the lower left corner are credible, as

shown in Fig. 13(c)(d) respectively. The blurred/depth image
pair is captured by RGB/depth hybrid acquisition system
which combines Point Grey FL2-08S2C and SwissRanger
SR4000. The depth camera is applicable for scenes within
10m and suffices in most indoor cases. The camera system
is calibrated using the method in [39]. The RGB image and
its corresponding depth captured by our hybrid camera are
shown in Fig. 13(a)(b). Fig. 13(e)(f) show the 2D projection
of PMDF with 6D and 3D (3 Rotations) parameter space,
and Fig. 13(g)(h) give the deblurred result and final kernels
estimated by reducing Dof to 3. There also exist some ringing
artifacts along the depth edges, this is due to rich texture
locates mostly in the bottom left corner and this part is coarsely
of a uniform depth, thus the illposeness of 6D PSF estimation
is more severe. In spite of these imperfections, our algorithm
still recovers most regions reasonably for such extreme cases.

3) Distant Scene: In this experiment, we show the degen-
eration caused by distant scene. Fig. 14 shows the example
obtained from [22], whose capture settings are provided on
the website: the focal length of camera is 35.1mm, CCD
size is 36mm×24mm, and the resolution is 259×194 pixels.
The depth information is not provided, but it can be deduced
by common sense that the distance from camera to scene is
more than 20m, then we can compute that at least 78.9mm
translation cause a pixel width blur. Therefore, the translation
can be ignored in this example.

We perform the deblurring with 3 rotation DoFs assumption
and compare the deblurring result with that of Fergus et al. [4]
and Whyte et al. [22], as shown in (b)(c). The results
reveal that, both Whyte et al.’s method and ours can give
promising deblurring results, while the Fergus et al.’s fails
to recover high frequency details. This is due to the fact
that the blur caused by in-plane rotation is intrinsically non-
uniform, thus the uniform deblur approach is infeasible for this
example.
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Fig. 14. Deblurring results of distant scene. Parameter settings: focal length
f =252 pixels, maximum 2D kernel size N=20 pixels, patch size is set to be
100×100 pixels and overlap size is 25 pixels. (a) Observed blurred image.
(b) The result of Fergus et al. [4]’s uniform deblurring method. (c) The result
of Whyte et al. [22]’s methods. (d) The result of our method.

In all, our approach is apparently superior to the uni-
form methods, while generally comparable to state-of-the-art
non-uniform ones in degeneration cases, although being
slightly inferior (in some regions) to the non-uniform methods
built specially for the degeneration cases. The inferiority is
mainly due to following reasons: 1) We adopt some strategies
(e.g. TSMF) to decrease computational cost and thus can
deal with high dimensional camera motion. These strategies
may harm the performance a bit, but our algorithm still
gives promising results. 2) Occam’s rule implies that a more
complex model may work worse for degenerated cases. 3) The
robustness of algorithm suffers from the errors and noise in
kernel estimation.

D. Experiment Results With Given Depth Map

1) Image Deblurring With Synthetic Depth and Motion:
We select an image with large depth range and blur it by
a simulated 6D camera motion and intrinsics. The blurred
image is shown in Fig. 15(a), while the sharp version and
corresponding depth map have been shown in Fig. 3(a)(b).
Former analysis shows that the PSFs are mainly affected by
rotation in farther regions, while the translation component
dominates in nearer regions, as shown in Fig. 15(b). For
comparison, we show the results of Cho and Lee’s [42],
Whyte et al.’s [22], Hirsch et al.’s [29] and Xu et al. [25]’s
methods in Fig. 15(c)(e)(f)(g) respectively in parallel with ours
in Fig. 15(h). Besides, to show the effectiveness of the global
constraint, we demonstrate the result of a naive fix-size-patch
non-uniform deblurring algorithm with the same patch size as
our method. For each patch, a state-of-the-art uniform method
(Xu et al. [9]) is applied. Considering that the size of the
blurred image is relatively small (383×434 pixels) compared
to the patch size (100×100 pixels), this experiment is very
challenging for our patch based framework. Obviously, our
approach gives promising results in all the regions while the

Fig. 15. Deblur results on synthetic data. Parameter settings: focal length
f =500 pixels, 2D kernel size N=12 pixels, patch size is 100×100 and overlap
size is 15 pixels. (a) Blurred image. (b) Ground truth PSFs map. (c) Result by
Cho and Lee [42]. (d) Result by naive patch-based deblurring without global
constraints. (e) Result by Whyte et al. [22]. (f) Result by Hirsch et al. [29].
(g) Result by Xu et al. [25]. (h) Our result.

Fig. 16. Deblur results with inaccurate depth map. Result with depth
computed from multiview images by stereo method [48].

other methods fail in some regions, because neither depth is
considered nor the adopted motion model can approximate the
6D camera motion well enough.
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Fig. 17. Deblur results on a blurred/depth image pair captured by hybrid camera system. Parameter settings: The RGB camera’s focal length f =751
pixels, 2D blur kernel size N=20 pixels, patch size is 180×180 pixels and overlap size is 30 pixels. (a) Input and intermediate results. (b)(c) Results of
Fergus et al. [4]’s algorithm by choosing areas marked by green/red panes for kernel estimation respectively. (d) Result of Whyte et al. [22]’s non-uniform
method. (e) Our result.

To test the tolerance of the proposed method to depth
inaccuracy, we applied our algorithm on the depth estimated
from the multiviews of Venus dataset [43] by Min and Kwang-
hoon’s method [48], as shown in Fig. 16. One can notice that
the performance is slightly affected but still quite promising
compared to that given true depth in Fig. 15(h). The robustness
to depth inaccuracy is mainly due to the proposed weighted
voting strategy.

2) Image Deblurring With Depth Camera Assistance: To
display the integral performance of the whole framework, we
test our deblurring algorithm on data captured by a RGB/depth
hybrid acquisition system. The blurred image and depth are
shown in the top and middle image in Fig. 17(a). From the
final estimated local blur kernel map (shown in bottom of
Fig. 17(a)), we can see that the blur kernels are spatially
varying. Fig. 17(b)(c)(d)(e) give comparison among deblurring
results of Fergus et al.’s [4], Whyte et al.’s [22] and ours,
with the close-ups shown below. Fig. 17(b)(c) respectively
give results of Fergus et al.’s [4] by selecting red and
green region for blur kernel estimation. It is obvious that
the uniform algorithms perform well in the selected region
while the performances in other areas deteriorate. On the
contrary, we achieve good performance over the whole image.
In addition, the algorithm of Whyte et al. [22] works almost
20 times (1 hour vs. 20 hours) slower than ours under the same
computing conditions (matlab code under Intel Core 2.1GHz,
4G RAM).

3) Image Deblurring With Depth Computed by Structure
From Motion Method: In practical applications, depth acquisi-
tion equipment may not be easily available for some scenarios.
Fortunately, our methods does not need a high quality depth
map, so we can use the depth map derived by structure from
motion methods. To deal with the feature correspondence
between blurred images, we downsample the original blurred

image to derive the coarse depth map and then smooth it by
bilateral filtering after upsampling.

An image sequence with large depth range is captured from
8 different views, and introduce some arbitrary camera shakes
manually. The first image in Fig. 18(a) shows the 2nd frame of
the sequence, and the scene depth estimated via stereo method
is in the middle image of column (a) (shown as disparity
map), and computed local blur kernel at each pixel is shown
in the bottom image in column (a). The deblur result and some
detailed regions are displayed in Fig. 18(e), in parallel with
that of Fergus et al. [4] in column (b), Shan et al. [4] in
column (c) and Whyte et al. [22] in column (d) as well.

The blur kernel of Fergus et al.’s method [4] is estimated
by (manually) selecting a local region of the blurred image.
Therefore, their method achieves good result in this area (indi-
cated by red rectangle), but serious ringing artifacts appear
in background region. Differently, Shan et al. [8] estimate
a global kernel from whole image, thus there exist apparent
artifacts in both foreground and background areas. Meanwhile,
Whyte et al. [22] ignores depth variation and camera transla-
tion and the result isn’t good enough either. In contrast, our
method performs estimation explicitly to compute non-uniform
blur kernels, and gives promising results in areas at different
depths, as shown in Fig. 18(e). Our result still has a slight of
artifacts along the occlusion boundaries (doll face and book
ridges) caused by depth estimation errors.

4) Image Deblurring With Biocular Stereo: We also
apply our algorithm on the Mickey data set provided by
Xu et al. [25]. As shown in Fig. 19(e), the depth map is
incorrect since it gives a constant value to several obviously
slant surfaces. We estimated the 2D local blur kernels from
patches (shown in Fig. 19(b)), and projected them back to 3D
motion parameter space(x , y- translation and in-plane rotation)
to compute the PMDF (shown in Fig. 19(c)). The result of
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Fig. 18. Deblur results on a multiview image set. Parameter settings: The focal length of the cameras f = 1761 pixels, 2D kernel size N=25 pixels,
patch size is set to be 200 × 200 pixels and overlap size is 30 pixels. (a) Input and intermediate results. (b—e) Result by Fergus et al. [4], shan et al. [8],
Whyte et al. [22] and our method.

Fig. 19. Deblurring result on a scene with inaccurate depth. (a) Blurred image. (b) Initial local blur kernels. (c) 2D projections of PMDFs. (d) Xu et al. [25]’s
deblur result. (e) Inaccurate depth map provided by Xu et al. [25]. (f) Confidence map. (g) Our final estimated blur kernels. (h) Our deblurring results.

our method is shown in Fig. 19(h), one can see that it gives
reasonable performance in most regions. However, compared
to Xu et al.’s [25] results, our method has more ringing
artifacts. This is mainly because that the proposed approach
requests that the blur kernels across the whole image lattice
conform to one unified high-dimensional camera motion, and
thus the performance is more sensitive to scene depth error,
which occurs often along the occlusion boundaries.

VI. DISCUSSIONS AND FUTURE WORK

We have proposed a 6D depth-aware blur model derived
from the projective geometry, and an effective camera motion
estimation approach. Benefiting from the guidance of unified
camera motion distribution estimated by local blur infor-
mation, our method achieves satisfying deblurred result for

non-uniformly blurred images, especially in the situations with
large depth range scene and apparent camera translation. For
the degeneration situations, our framework can flexibly select
the motion dimension to degrade the motion blur model, and
thus can reduce computational cost and prevent over-fitting.

The robustness of deblurring methods is a problem
concerned by the whole community, especially for such a com-
plex model. This paper proposes backprojection and weighted
voting strategy to raise the robustness to LBK estimation
errors in some extreme cases. As shown in the experiments,
our algorithm can give promising result when most estimated
local blur kernels have intensive errors and noise, which
shows the robustness of the proposed algorithm. However, the
accuracy of locally estimated blur kernels is still crucial for
our framework. In the future, we’ll try to improve to make the
algorithm more robust and adaptive.
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In terms of computational speed, it can be greatly acceler-
ated by GPU for most calculations within each iteration are
highly parallel. In addition, out-of-focus effect which often
co-occurs with camera shake blur under low light environment
will also be considered as an extension.
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